首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1048篇
  免费   2篇
  国内免费   6篇
系统科学   16篇
丛书文集   2篇
教育与普及   3篇
理论与方法论   40篇
现状及发展   249篇
研究方法   195篇
综合类   519篇
自然研究   32篇
  2021年   6篇
  2018年   7篇
  2017年   12篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   10篇
  2012年   84篇
  2011年   106篇
  2010年   29篇
  2009年   13篇
  2008年   66篇
  2007年   47篇
  2006年   48篇
  2005年   42篇
  2004年   72篇
  2003年   48篇
  2002年   39篇
  2001年   23篇
  2000年   26篇
  1999年   27篇
  1996年   4篇
  1995年   4篇
  1992年   10篇
  1991年   6篇
  1990年   8篇
  1989年   10篇
  1988年   10篇
  1987年   7篇
  1986年   9篇
  1985年   12篇
  1984年   12篇
  1983年   8篇
  1982年   8篇
  1980年   13篇
  1979年   14篇
  1978年   12篇
  1977年   15篇
  1976年   6篇
  1975年   13篇
  1974年   23篇
  1973年   13篇
  1972年   11篇
  1971年   6篇
  1970年   14篇
  1969年   12篇
  1968年   13篇
  1967年   10篇
  1966年   12篇
  1965年   7篇
排序方式: 共有1056条查询结果,搜索用时 31 毫秒
41.
A20 (TNFAIP3) is a protein that is involved in the negative feedback regulation of NF-κB signaling in response to specific proinflammatory stimuli in different cell types and has been suggested as a susceptibility gene for rheumatoid arthritis. To define the contribution of A20 to rheumatoid arthritis pathology, we generated myeloid-specific A20-deficient mice and show that specific ablation of Tnfaip3 in myeloid cells results in spontaneous development of a severe destructive polyarthritis with many features of rheumatoid arthritis. Myeloid-A20-deficient mice have high levels of inflammatory cytokines in their serum, consistent with a sustained NF-κB activation and higher TNF production by macrophages. Destructive polyarthritis in myeloid A20 knockout mice was TLR4-MyD88 and IL-6 dependent but was TNF independent. Myeloid A20 deficiency also promoted osteoclastogenesis in mice. Together, these observations indicate a critical and cell-specific function for A20 in the etiology of rheumatoid arthritis, supporting the idea of developing A20 modulatory drugs as cell-targeted therapies.  相似文献   
42.
Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.  相似文献   
43.
US maize yield has increased eight-fold in the past 80 years, with half of the gain attributed to selection by breeders. During this time, changes in maize leaf angle and size have altered plant architecture, allowing more efficient light capture as planting density has increased. Through a genome-wide association study (GWAS) of the maize nested association mapping panel, we determined the genetic basis of important leaf architecture traits and identified some of the key genes. Overall, we demonstrate that the genetic architecture of the leaf traits is dominated by small effects, with little epistasis, environmental interaction or pleiotropy. In particular, GWAS results show that variations at the liguleless genes have contributed to more upright leaves. These results demonstrate that the use of GWAS with specially designed mapping populations is effective in uncovering the basis of key agronomic traits.  相似文献   
44.
Thoracic aortic aneurysms and dissections are a main feature of connective tissue disorders, such as Marfan syndrome and Loeys-Dietz syndrome. We delineated a new syndrome presenting with aneurysms, dissections and tortuosity throughout the arterial tree in association with mild craniofacial features and skeletal and cutaneous anomalies. In contrast with other aneurysm syndromes, most of these affected individuals presented with early-onset osteoarthritis. We mapped the genetic locus to chromosome 15q22.2-24.2 and show that the disease is caused by mutations in SMAD3. This gene encodes a member of the TGF-β pathway that is essential for TGF-β signal transmission. SMAD3 mutations lead to increased aortic expression of several key players in the TGF-β pathway, including SMAD3. Molecular diagnosis will allow early and reliable identification of cases and relatives at risk for major cardiovascular complications. Our findings endorse the TGF-β pathway as the primary pharmacological target for the development of new treatments for aortic aneurysms and osteoarthritis.  相似文献   
45.
We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10(-10)) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10(-9)). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10(-14), OR = 1.51, 95% CI 1.35-1.68; rs4977756 combined P = 1.35 × 10(-14), OR = 1.39, 95% CI 1.28-1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma.  相似文献   
46.
47.
We identified a SNP in the DPP6 gene that is consistently strongly associated with susceptibility to amyotrophic lateral sclerosis (ALS) in different populations of European ancestry, with an overall P value of 5.04 x 10(-8) in 1,767 cases and 1,916 healthy controls and with an odds ratio of 1.30 (95% confidence interval (CI) of 1.18-1.43). Our finding is the first report of a genome-wide significant association with sporadic ALS and may be a target for future functional studies.  相似文献   
48.
To search for new sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conducted a genome-wide SNP association study of 930 Icelanders with BCC and 33,117 controls. After analyzing 304,083 SNPs, we observed signals from loci at 1p36 and 1q42, and replicated these associations in additional sample sets from Iceland and Eastern Europe. Overall, the most significant signals were from rs7538876 on 1p36 (OR = 1.28, P = 4.4 x 10(-12)) and rs801114 on 1q42 (OR = 1.28, P = 5.9 x 10(-12)). The 1p36 locus contains the candidate genes PADI4, PADI6, RCC2 and ARHGEF10L, and the gene nearest to the 1q42 locus is the ras-homolog RHOU. Neither locus was associated with fair pigmentation traits that are known risk factors for BCC, and no risk was observed for melanoma. Approximately 1.6% of individuals of European ancestry are homozygous for both variants, and their estimated risk of BCC is 2.68 times that of noncarriers.  相似文献   
49.
We conducted a genome-wide association study for androgenic alopecia in 1,125 men and identified a newly associated locus at chromosome 20p11.22, confirmed in three independent cohorts (n = 1,650; OR = 1.60, P = 1.1 x 10(-14) for rs1160312). The one man in seven who harbors risk alleles at both 20p11.22 and AR (encoding the androgen receptor) has a sevenfold-increased odds of androgenic alopecia (OR = 7.12, P = 3.7 x 10(-15)).  相似文献   
50.
We have recently described two kindreds presenting thoracic aortic aneurysm and/or aortic dissection (TAAD) and patent ductus arteriosus (PDA) and mapped the disease locus to 16p12.2-p13.13 (ref. 3). We now demonstrate that the disease is caused by mutations in the MYH11 gene affecting the C-terminal coiled-coil region of the smooth muscle myosin heavy chain, a specific contractile protein of smooth muscle cells (SMC). All individuals bearing the heterozygous mutations, even if asymptomatic, showed marked aortic stiffness. Examination of pathological aortas showed large areas of medial degeneration with very low SMC content. Abnormal immunological recognition of SM-MHC and the colocalization of wild-type and mutant rod proteins in SMC, in conjunction with differences in their coimmunoprecipitation capacities, strongly suggest a dominant-negative effect. Human MYH11 gene mutations provide the first example of a direct change in a specific SMC protein leading to an inherited arterial disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号