全文获取类型
收费全文 | 80篇 |
免费 | 0篇 |
专业分类
现状及发展 | 39篇 |
研究方法 | 12篇 |
综合类 | 29篇 |
出版年
2022年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 4篇 |
2015年 | 3篇 |
2013年 | 2篇 |
2012年 | 4篇 |
2011年 | 12篇 |
2010年 | 4篇 |
2009年 | 1篇 |
2008年 | 4篇 |
2007年 | 4篇 |
2006年 | 4篇 |
2005年 | 5篇 |
2004年 | 3篇 |
2003年 | 5篇 |
2002年 | 2篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1973年 | 2篇 |
1970年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1965年 | 2篇 |
1964年 | 2篇 |
1962年 | 2篇 |
1959年 | 1篇 |
排序方式: 共有80条查询结果,搜索用时 15 毫秒
51.
52.
CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains 总被引:1,自引:0,他引:1
ABC (ATP-binding cassette) proteins constitute a large family of membrane proteins that actively transport a broad range of substrates. Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ABC proteins in that its transmembrane domains comprise an ion channel. Opening and closing of the pore have been linked to ATP binding and hydrolysis at CFTR's two nucleotide-binding domains, NBD1 and NBD2 (see, for example, refs 1, 2). Isolated NBDs of prokaryotic ABC proteins dimerize upon binding ATP, and hydrolysis of the ATP causes dimer dissociation. Here, using single-channel recording methods on intact CFTR molecules, we directly follow opening and closing of the channel gates, and relate these occurrences to ATP-mediated events in the NBDs. We find that energetic coupling between two CFTR residues, expected to lie on opposite sides of its predicted NBD1-NBD2 dimer interface, changes in concert with channel gating status. The two monitored side chains are independent of each other in closed channels but become coupled as the channels open. The results directly link ATP-driven tight dimerization of CFTR's cytoplasmic nucleotide-binding domains to opening of the ion channel in the transmembrane domains. This establishes a molecular mechanism, involving dynamic restructuring of the NBD dimer interface, that is probably common to all members of the ABC protein superfamily. 相似文献
53.
Carollo D Beers TC Lee YS Chiba M Norris JE Wilhelm R Sivarani T Marsteller B Munn JA Bailer-Jones CA Fiorentin PR York DG 《Nature》2007,450(7172):1020-1025
The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, and this information can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components--an inner and an outer halo--that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps. 相似文献
54.
Pregnancy: a cloned horse born to its dam twin 总被引:1,自引:0,他引:1
Galli C Lagutina I Crotti G Colleoni S Turini P Ponderato N Duchi R Lazzari G 《Nature》2003,424(6949):635
Several animal species, including sheep, mice, cattle, goats, rabbits, cats, pigs and, more recently, mules have been reproduced by somatic cell cloning, with the offspring being a genetic copy of the animal donor of the nuclear material used for transfer into an enucleated oocyte. Here we use this technology to clone an adult horse and show that it is possible to establish a viable, full-term pregnancy in which the surrogate mother is also the nuclear donor. The cloned offspring is therefore genetically identical to the mare who carried it, challenging the idea that maternal immunological recognition of fetal antigens influences the well-being of the fetus and the outcome of the pregnancy. 相似文献
55.
Male infertility is a long-standing enigma of significant medical concern. The integrity of sperm chromatin is a clinical indicator of male fertility and in vitro fertilization potential: chromosome aneuploidy and DNA decondensation or damage are correlated with reproductive failure. Identifying conserved proteins important for sperm chromatin structure and packaging can reveal universal causes of infertility. Here we combine proteomics, cytology and functional analysis in Caenorhabditis elegans to identify spermatogenic chromatin-associated proteins that are important for fertility. Our strategy employed multiple steps: purification of chromatin from comparable meiotic cell types, namely those undergoing spermatogenesis or oogenesis; proteomic analysis by multidimensional protein identification technology (MudPIT) of factors that co-purify with chromatin; prioritization of sperm proteins based on abundance; and subtraction of common proteins to eliminate general chromatin and meiotic factors. Our approach reduced 1,099 proteins co-purified with spermatogenic chromatin, currently the most extensive catalogue, to 132 proteins for functional analysis. Reduction of gene function through RNA interference coupled with protein localization studies revealed conserved spermatogenesis-specific proteins vital for DNA compaction, chromosome segregation, and fertility. Unexpected roles in spermatogenesis were also detected for factors involved in other processes. Our strategy to find fertility factors conserved from C. elegans to mammals achieved its goal: of mouse gene knockouts corresponding to nematode proteins, 37% (7/19) cause male sterility. Our list therefore provides significant opportunity to identify causes of male infertility and targets for male contraceptives. 相似文献
56.
57.
Neuronal polarization occurs shortly after mitosis. In neurons differentiating in vitro, axon formation follows the segregation of growth-promoting activities to only one of the multiple neurites that form after mitosis. It is unresolved whether such spatial restriction makes use of an intrinsic program, like during C. elegans embryo polarization, or is extrinsic and cue-mediated, as in migratory cells. Here we show that in hippocampal neurons in vitro, the axon consistently arises from the neurite that develops first after mitosis. Centrosomes, the Golgi apparatus and endosomes cluster together close to the area where the first neurite will form, which is in turn opposite from the plane of the last mitotic division. We show that the polarized activities of these organelles are necessary and sufficient for neuronal polarization: (1) polarized microtubule polymerization and membrane transport precedes first neurite formation, (2) neurons with more than one centrosome sprout more than one axon and (3) suppression of centrosome-mediated functions precludes polarization. We conclude that asymmetric centrosome-mediated dynamics in the early post-mitotic stage instruct neuronal polarity, implying that pre-mitotic mechanisms with a role in division orientation may in turn participate in this event. 相似文献
58.
Paola Gramatica P. Manitto B. Maria Ranzi A. Delbianco Maria Francavilla 《Cellular and molecular life sciences : CMLS》1982,38(7):775-776
Summary (R)-(+)-citronellol, a useful C10 chiral synthon for natural terpenoid products, can be obtained in enantiomerically pure form and satisfactory yield by yeast reduction of geraniol. 相似文献
59.
Deng X Hofmann ER Villanueva A Hobert O Capodieci P Veach DR Yin X Campodonico L Glekas A Cordon-Cardo C Clarkson B Bornmann WG Fuks Z Hengartner MO Kolesnick R 《Nature genetics》2004,36(8):906-912
c-Abl, a conserved nonreceptor tyrosine kinase, integrates genotoxic stress responses, acting as a transducer of both pro- and antiapoptotic effector pathways. Nuclear c-Abl seems to interact with the p53 homolog p73 to elicit apoptosis. Although several observations suggest that cytoplasmic localization of c-Abl is required for antiapoptotic function, the signals that mediate its antiapoptotic effect are largely unknown. Here we show that worms carrying an abl-1 deletion allele, abl-1(ok171), are specifically hypersensitive to radiation-induced apoptosis in the Caenorhabditis elegans germ line. Our findings delineate an apoptotic pathway antagonized by ABL-1, which requires sequentially the cell cycle checkpoint genes clk-2, hus-1 and mrt-2; the C. elegans p53 homolog, cep-1; and the genes encoding the components of the conserved apoptotic machinery, ced-3, ced-9 and egl-1. ABL-1 does not antagonize germline apoptosis induced by the DNA-alkylating agent ethylnitrosourea. Furthermore, worms treated with the c-Abl inhibitor STI-571 (Gleevec; used in human cancer therapy), two newly synthesized STI-571 variants or PD166326 had a phenotype similar to that generated by abl-1(ok171). These studies indicate that ABL-1 distinguishes proapoptotic signals triggered by two different DNA-damaging agents and suggest that C. elegans might provide tissue models for development of anticancer drugs. 相似文献
60.
Stevanin G Santorelli FM Azzedine H Coutinho P Chomilier J Denora PS Martin E Ouvrard-Hernandez AM Tessa A Bouslam N Lossos A Charles P Loureiro JL Elleuch N Confavreux C Cruz VT Ruberg M Leguern E Grid D Tazir M Fontaine B Filla A Bertini E Durr A Brice A 《Nature genetics》2007,39(3):366-372
Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is a common and clinically distinct form of familial spastic paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval and identified ten mutations in a previously unidentified gene expressed ubiquitously in the nervous system but most prominently in the cerebellum, cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense or insertions and deletions leading to a frameshift, suggesting a loss-of-function mechanism. The identification of the function of the gene will provide insight into the mechanisms leading to the degeneration of the corticospinal tract and other brain structures in this frequent form of ARHSP. 相似文献