首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   2篇
  国内免费   2篇
系统科学   7篇
理论与方法论   1篇
现状及发展   48篇
研究方法   42篇
综合类   132篇
自然研究   8篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   11篇
  2011年   30篇
  2010年   6篇
  2009年   2篇
  2008年   17篇
  2007年   19篇
  2006年   15篇
  2005年   10篇
  2004年   18篇
  2003年   16篇
  2002年   14篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1997年   1篇
  1996年   2篇
  1992年   5篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   7篇
  1969年   4篇
  1968年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
231.
Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.  相似文献   
232.
Ramadan K  Bruderer R  Spiga FM  Popp O  Baur T  Gotta M  Meyer HH 《Nature》2007,450(7173):1258-1262
During division of metazoan cells, the nucleus disassembles to allow chromosome segregation, and then reforms in each daughter cell. Reformation of the nucleus involves chromatin decondensation and assembly of the double-membrane nuclear envelope around the chromatin; however, regulation of the process is still poorly understood. In vitro, nucleus formation requires p97 (ref. 3), a hexameric ATPase implicated in membrane fusion and ubiquitin-dependent processes. However, the role and relevance of p97 in nucleus formation have remained controversial. Here we show that p97 stimulates nucleus reformation by inactivating the chromatin-associated kinase Aurora B. During mitosis, Aurora B inhibits nucleus reformation by preventing chromosome decondensation and formation of the nuclear envelope membrane. During exit from mitosis, p97 binds to Aurora B after its ubiquitylation and extracts it from chromatin. This leads to inactivation of Aurora B on chromatin, thus allowing chromatin decondensation and nuclear envelope formation. These data reveal an essential pathway that regulates reformation of the nucleus after mitosis and defines ubiquitin-dependent protein extraction as a common mechanism of Cdc48/p97 activity also during nucleus formation.  相似文献   
233.
We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.  相似文献   
234.
Extinction risk from climate change   总被引:20,自引:0,他引:20  
Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.  相似文献   
235.
236.
Najman Y  Pringle M  Godin L  Oliver G 《Nature》2001,410(6825):194-197
A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate. Continental sediments 55 Myr old found in a foreland basin in Pakistan are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision, timing and mechanisms of exhumation and uplift, as well as our general understanding of foreland basin dynamics. But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units. Here we present dates of 257 detrital grains of white mica from this succession, using the 40Ar-39Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated.  相似文献   
237.
Guilt-by-association goes global   总被引:22,自引:0,他引:22  
Oliver S 《Nature》2000,403(6770):601-603
  相似文献   
238.
Derry LA  Kurtz AC  Ziegler K  Chadwick OA 《Nature》2005,433(7027):728-731
Silicon has a crucial role in many biogeochemical processes--for example, as a nutrient for marine and terrestrial biota, in buffering soil acidification and in the regulation of atmospheric carbon dioxide. Traditionally, silica fluxes to soil solutions and stream waters are thought to be controlled by the weathering and subsequent dissolution of silicate minerals. Rates of mineral dissolution can be enhanced by biological processes. But plants also take up considerable quantities of silica from soil solution, which is recycled into the soil from falling litter in a separate soil-plant silica cycle that can be significant in comparison with weathering input and hydrologic output. Here we analyse soil water in basaltic soils across the Hawaiian islands to assess the relative contributions of weathering and biogenic silica cycling by using the distinct signatures of the two processes in germanium/silicon ratios. Our data imply that most of the silica released to Hawaiian stream water has passed through the biogenic silica pool, whereas direct mineral-water reactions account for a smaller fraction of the stream silica flux. We expect that other systems exhibiting strong Si depletion of the mineral soils and/or high Si uptake rates by biomass will also have strong biological control on silica cycling and export.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号