首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
现状及发展   7篇
研究方法   7篇
综合类   11篇
  2018年   1篇
  2013年   1篇
  2012年   2篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1977年   2篇
  1967年   1篇
  1964年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
Human chromosome 14q32.2 carries a cluster of imprinted genes including paternally expressed genes (PEGs) such as DLK1 and RTL1 and maternally expressed genes (MEGs) such as MEG3 (also known as GTL2), RTL1as (RTL1 antisense) and MEG8 (refs. 1,2), together with the intergenic differentially methylated region (IG-DMR) and the MEG3-DMR. Consistent with this, paternal and maternal uniparental disomy for chromosome 14 (upd(14)pat and upd(14)mat) cause distinct phenotypes. We studied eight individuals (cases 1-8) with a upd(14)pat-like phenotype and three individuals (cases 9-11) with a upd(14)mat-like phenotype in the absence of upd(14) and identified various deletions and epimutations affecting the imprinted region. The results, together with recent mouse data, imply that the IG-DMR has an important cis-acting regulatory function on the maternally inherited chromosome and that excessive RTL1 expression and decreased DLK1 and RTL1 expression are relevant to upd(14)pat-like and upd(14)mat-like phenotypes, respectively.  相似文献   
22.
Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.  相似文献   
23.
Bone remodelling and bone loss are controlled by a balance between the tumour necrosis factor family molecule osteoprotegerin ligand (OPGL) and its decoy receptor osteoprotegerin (OPG). In addition, OPGL regulates lymph node organogenesis, lymphocyte development and interactions between T cells and dendritic cells in the immune system. The OPGL receptor, RANK, is expressed on chondrocytes, osteoclast precursors and mature osteoclasts. OPGL expression in T cells is induced by antigen receptor engagement, which suggests that activated T cells may influence bone metabolism through OPGL and RANK. Here we report that activated T cells can directly trigger osteoclastogenesis through OPGL. Systemic activation of T cells in vivo leads to an OPGL-mediated increase in osteoclastogenesis and bone loss. In a T-cell-dependent model of rat adjuvant arthritis characterized by severe joint inflammation, bone and cartilage destruction and crippling, blocking of OPGL through osteoprotegerin treatment at the onset of disease prevents bone and cartilage destruction but not inflammation. These results show that both systemic and local T-cell activation can lead to OPGL production and subsequent bone loss, and they provide a novel paradigm for T cells as regulators of bone physiology.  相似文献   
24.
Germline mutations in HRAS proto-oncogene cause Costello syndrome   总被引:17,自引:0,他引:17  
Costello syndrome is a multiple congenital anomaly and mental retardation syndrome characterized by coarse face, loose skin, cardiomyopathy and predisposition to tumors. We identified four heterozygous de novo mutations of HRAS in 12 of 13 affected individuals, all of which were previously reported as somatic and oncogenic mutations in various tumors. Our observations suggest that germline mutations in HRAS perturb human development and increase susceptibility to tumors.  相似文献   
25.
The signalling thresholds of antigen receptors and co-stimulatory receptors determine immunity or tolerance to self molecules. Changes in co-stimulatory pathways can lead to enhanced activation of lymphocytes and autoimmunity, or the induction of clonal anergy. The molecular mechanisms that maintain immunotolerance in vivo and integrate co-stimulatory signals with antigen receptor signals in T and B lymphocytes are poorly understood. Members of the Cbl/Sli family of molecular adaptors function downstream from growth factor and antigen receptors. Here we show that gene-targeted mice lacking the adaptor Cbl-b develop spontaneous autoimmunity characterized by auto-antibody production, infiltration of activated T and B lymphocytes into multiple organs, and parenchymal damage. Resting cbl-b(-/-) lymphocytes hyperproliferate upon antigen receptor stimulation, and cbl-b(-/-) T cells display specific hyperproduction of the T-cell growth factor interleukin-2, but not interferon-gamma or tumour necrosis factor-alpha. Mutation of Cbl-b uncouples T-cell proliferation, interleukin-2 production and phosphorylation of the GDP/GTP exchange factor Vav1 from the requirement for CD28 co-stimulation. Cbl-b is thus a key regulator of activation thresholds in mature lymphocytes and immunological tolerance and autoimmunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号