首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11867篇
  免费   24篇
  国内免费   42篇
系统科学   35篇
丛书文集   80篇
教育与普及   30篇
理论与方法论   42篇
现状及发展   5139篇
研究方法   565篇
综合类   5886篇
自然研究   156篇
  2013年   96篇
  2012年   191篇
  2011年   330篇
  2010年   85篇
  2009年   59篇
  2008年   190篇
  2007年   222篇
  2006年   203篇
  2005年   224篇
  2004年   208篇
  2003年   207篇
  2002年   198篇
  2001年   379篇
  2000年   364篇
  1999年   263篇
  1992年   232篇
  1991年   180篇
  1990年   204篇
  1989年   190篇
  1988年   201篇
  1987年   205篇
  1986年   160篇
  1985年   248篇
  1984年   170篇
  1983年   149篇
  1982年   166篇
  1981年   135篇
  1980年   170篇
  1979年   385篇
  1978年   291篇
  1977年   287篇
  1976年   249篇
  1975年   289篇
  1974年   310篇
  1973年   308篇
  1972年   345篇
  1971年   348篇
  1970年   430篇
  1969年   366篇
  1968年   381篇
  1967年   352篇
  1966年   319篇
  1965年   203篇
  1959年   107篇
  1958年   204篇
  1957年   137篇
  1956年   122篇
  1955年   105篇
  1954年   81篇
  1948年   83篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
Recognizing the successes of treed Gaussian process (TGP) models as an interpretable and thrifty model for nonparametric regression, we seek to extend the model to classification. Both treed models and Gaussian processes (GPs) have, separately, enjoyed great success in application to classification problems. An example of the former is Bayesian CART. In the latter, real-valued GP output may be utilized for classification via latent variables, which provide classification rules by means of a softmax function. We formulate a Bayesian model averaging scheme to combine these two models and describe a Monte Carlo method for sampling from the full posterior distribution with joint proposals for the tree topology and the GP parameters corresponding to latent variables at the leaves. We concentrate on efficient sampling of the latent variables, which is important to obtain good mixing in the expanded parameter space. The tree structure is particularly helpful for this task and also for developing an efficient scheme for handling categorical predictors, which commonly arise in classification problems. Our proposed classification TGP (CTGP) methodology is illustrated on a collection of synthetic and real data sets. We assess performance relative to existing methods and thereby show how CTGP is highly flexible, offers tractable inference, produces rules that are easy to interpret, and performs well out of sample.  相似文献   
102.
Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.  相似文献   
103.
Molecular oxygen (O2) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O2 concentration, state of decreased O2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.  相似文献   
104.
Microfracture of subchondral bone results in intrinsic repair of cartilage defects. Stem or progenitor cells from bone marrow have been proposed to be involved in this regenerative process. Here, we demonstrate for the first time that mesenchymal stem (MS) cells can in fact be recovered from matrix material saturated with cells from bone marrow after microfracture. This also introduces a new technique for MS cell isolation during arthroscopic treatment. MS cells were phenotyped using specific cell surface antibodies. Differentiation of the MS cells into the adipogenic, chondrogenic and osteogenic lineage could be demonstrated by cultivation of MS cells as a monolayer, as micromass bodies or mesenchymal microspheres. This study demonstrates that MS cells can be attracted to a cartilage defect by guidance of a collagenous matrix after perforating subchondral bone. Protocols for application of MS cells in restoration of cartilage tissue include an initial invasive biopsy to obtain the MS cells and time-wasting in vitro proliferation and possibly differentiation of the cells before implantation. The new technique already includes attraction of MS cells to sites of cartilage defects and therefore may overcome the necessity of in vitro proliferation and differentiation of MS cells prior to transplantation. Received 3 November 2005; received after revision 15 December 2005; accepted 4 January 2006  相似文献   
105.
106.
Atopic disease, including atopic dermatitis (eczema), allergy and asthma, has increased in frequency in recent decades and now affects approximately 20% of the population in the developed world. Twin and family studies have shown that predisposition to atopic disease is highly heritable. Although most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis. These variants are carried by approximately 9% of people of European origin. These variants also show highly significant association with asthma occurring in the context of atopic dermatitis. This work establishes a key role for impaired skin barrier function in the development of atopic disease.  相似文献   
107.
We present the first analysis of the human proteome with regard to interactions between proteins. We also compare the human interactome with the available interaction datasets from yeast (Saccharomyces cerevisiae), worm (Caenorhabditis elegans) and fly (Drosophila melanogaster). Of >70,000 binary interactions, only 42 were common to human, worm and fly, and only 16 were common to all four datasets. An additional 36 interactions were common to fly and worm but were not observed in humans, although a coimmunoprecipitation assay showed that 9 of the interactions do occur in humans. A re-examination of the connectivity of essential genes in yeast and humans indicated that the available data do not support the presumption that the number of interaction partners can accurately predict whether a gene is essential. Finally, we found that proteins encoded by genes mutated in inherited genetic disorders are likely to interact with proteins known to cause similar disorders, suggesting the existence of disease subnetworks. The human interaction map constructed from our analysis should facilitate an integrative systems biology approach to elucidating the cellular networks that contribute to health and disease states.  相似文献   
108.
109.
110.
The genetic basis of most conditions characterized by congenital contractures is largely unknown. Here we show that mutations in the embryonic myosin heavy chain (MYH3) gene cause Freeman-Sheldon syndrome (FSS), one of the most severe multiple congenital contracture (that is, arthrogryposis) syndromes, and nearly one-third of all cases of Sheldon-Hall syndrome (SHS), the most common distal arthrogryposis. FSS and SHS mutations affect different myosin residues, demonstrating that MYH3 genotype is predictive of phenotype. A structure-function analysis shows that nearly all of the MYH3 mutations are predicted to interfere with myosin's catalytic activity. These results add to the growing body of evidence showing that congenital contractures are a shared outcome of prenatal defects in myofiber force production. Elucidation of the genetic basis of these syndromes redefines congenital contractures as unique defects of the sarcomere and provides insights about what has heretofore been a poorly understood group of disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号