首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
现状及发展   6篇
研究方法   2篇
综合类   5篇
  2018年   2篇
  2016年   1篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
Heterozygous TGFBR2 mutations in Marfan syndrome   总被引:24,自引:0,他引:24  
Marfan syndrome is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton and cardiovascular systems associated with defects in the gene encoding fibrillin (FBN1) at 15q21.1 (ref. 1). A second type of the disorder (Marfan syndrome type 2; OMIM 154705) is associated with a second locus, MFS2, at 3p25-p24.2 in a large French family (family MS1). Identification of a 3p24.1 chromosomal breakpoint disrupting the gene encoding TGF-beta receptor 2 (TGFBR2) in a Japanese individual with Marfan syndrome led us to consider TGFBR2 as the gene underlying association with Marfan syndrome at the MSF2 locus. The mutation 1524G-->A in TGFBR2 (causing the synonymous amino acid substitution Q508Q) resulted in abnormal splicing and segregated with MFS2 in family MS1. We identified three other missense mutations in four unrelated probands, which led to loss of function of TGF-beta signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor-suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders.  相似文献   
12.
Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair.  相似文献   
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号