首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   2篇
系统科学   19篇
教育与普及   2篇
现状及发展   21篇
研究方法   9篇
综合类   70篇
自然研究   3篇
  2021年   2篇
  2020年   2篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2012年   7篇
  2011年   19篇
  2010年   1篇
  2009年   2篇
  2008年   8篇
  2007年   8篇
  2006年   8篇
  2005年   15篇
  2004年   6篇
  2003年   12篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   5篇
  1993年   6篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有124条查询结果,搜索用时 78 毫秒
81.
82.
Diatoms are unicellular or chain-forming phytoplankton that use silicon (Si) in cell wall construction. Their survival during periods of apparent nutrient exhaustion enhances carbon sequestration in frontal regions of the northern North Atlantic. These regions may therefore have a more important role in the 'biological pump' than they have previously been attributed, but how this is achieved is unknown. Diatom growth depends on silicate availability, in addition to nitrate and phosphate, but northern Atlantic waters are richer in nitrate than silicate. Following the spring stratification, diatoms are the first phytoplankton to bloom. Once silicate is exhausted, diatom blooms subside in a major export event. Here we show that, with nitrate still available for new production, the diatom bloom is prolonged where there is a periodic supply of new silicate: specifically, diatoms thrive by 'mining' deep-water silicate brought to the surface by an unstable ocean front. The mechanism we present here is not limited to silicate fertilization; similar mechanisms could support nitrate-, phosphate- or iron-limited frontal regions in oceans elsewhere.  相似文献   
83.
Microporous oxides are inorganic materials with wide applications in separations, ion exchange and catalysis. In such materials, an important determinant of pore size is the number of M (where M = Si, Ge and so on) atoms in the rings delineating the channels. The important faujasite structure exhibits 12-ring structures while those of zeolites, germanates and other materials can be much larger. Recent attention has focused on mesoporous materials with larger pores of nanometre scale; however, with the exception of an inorganic-organic hybrid, these have amorphous pore walls, limiting many applications. Chiral porous oxides are particularly desirable for enantioselective sorption and catalysis. However, they are very rare in microporous and mesoporous materials. Here we describe a mesoporous germanium oxide, SU-M, with gyroidal channels separated by crystalline walls that lie about the G (gyroid) minimal surface as in the mesoporous MCM-48 (ref. 9). It has the largest primitive cell and lowest framework density of any inorganic material and channels that are defined by 30-rings. One of the two gyroidal channel systems of SU-M can be filled with additional oxide, resulting in a mesoporous crystal (SU-MB) with chiral channels.  相似文献   
84.
85.
RNA interference (RNAi) regulates gene expression by the cleavage of messenger RNA, by mRNA degradation and by preventing protein synthesis. These effects are mediated by a ribonucleoprotein complex known as RISC (RNA-induced silencing complex). We have previously identified four Drosophila components (short interfering RNAs, Argonaute 2 (ref. 2), VIG and FXR) of a RISC enzyme that degrades specific mRNAs in response to a double-stranded-RNA trigger. Here we show that Tudor-SN (tudor staphylococcal nuclease)--a protein containing five staphylococcal/micrococcal nuclease domains and a tudor domain--is a component of the RISC enzyme in Caenorhabditis elegans, Drosophila and mammals. Although Tudor-SN contains non-canonical active-site sequences, we show that purified Tudor-SN exhibits nuclease activity similar to that of other staphylococcal nucleases. Notably, both purified Tudor-SN and RISC are inhibited by a specific competitive inhibitor of micrococcal nuclease. Tudor-SN is the first RISC subunit to be identified that contains a recognizable nuclease domain, and could therefore contribute to the RNA degradation observed in RNAi.  相似文献   
86.
Many biological processes, such as development and cell cycle progression are tightly controlled by selective ubiquitin-dependent degradation of key substrates. In this pathway, the E3-ligase recognizes the substrate and targets it for degradation by the 26S proteasome. The SCF (Skp1-Cul1-F-box) and ECS (Elongin C-Cul2-SOCS box) complexes are two well-defined cullin-based E3-ligases. The cullin subunits serve a scaffolding function and interact through their C terminus with the RING-finger-containing protein Hrt1/Roc1/Rbx1, and through their N terminus with Skp1 or Elongin C, respectively. In Caenorhabditis elegans, the ubiquitin-ligase activity of the CUL-3 complex is required for degradation of the microtubule-severing protein MEI-1/katanin at the meiosis-to-mitosis transition. However, the molecular composition of this cullin-based E3-ligase is not known. Here we identified the BTB-containing protein MEL-26 as a component required for degradation of MEI-1 in vivo. Importantly, MEL-26 specifically interacts with CUL-3 and MEI-1 in vivo and in vitro, and displays properties of a substrate-specific adaptor. Our results suggest that BTB-containing proteins may generally function as substrate-specific adaptors in Cul3-based E3-ubiquitin ligases.  相似文献   
87.
Ludwig M  Sabatier N  Bull PM  Landgraf R  Dayanithi G  Leng G 《Nature》2002,418(6893):85-89
Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.  相似文献   
88.
Climate change: Regional warming and malaria resurgence   总被引:1,自引:0,他引:1  
Patz JA  Hulme M  Rosenzweig C  Mitchell TD  Goldberg RA  Githeko AK  Lele S  McMichael AJ  Le Sueur D 《Nature》2002,420(6916):627-8; discussion 628
  相似文献   
89.
Linearly concatenated cyclobutane lipids form a dense bacterial membrane   总被引:21,自引:0,他引:21  
Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings, but four-membered aliphatic cyclobutane rings have never been observed. Here we report the discovery of cyclobutane rings in the dominant membrane lipids of two anaerobic ammonium-oxidizing (anammox) bacteria. These lipids contain up to five linearly fused cyclobutane moieties with cis ring junctions. Such 'ladderane' molecules are unprecedented in nature but are known as promising building blocks in optoelectronics. The ladderane lipids occur in the membrane of the anammoxosome, the dedicated intracytoplasmic compartment where anammox catabolism takes place. They give rise to an exceptionally dense membrane, a tight barrier against diffusion. We propose that such a membrane is required to maintain concentration gradients during the exceptionally slow anammox metabolism and to protect the remainder of the cell from the toxic anammox intermediates. Our results further illustrate that microbial membrane lipid structures are far more diverse than previously recognized.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号