首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3313篇
  免费   91篇
  国内免费   16篇
系统科学   122篇
丛书文集   4篇
教育与普及   3篇
理论与方法论   29篇
现状及发展   1053篇
研究方法   35篇
综合类   2163篇
自然研究   11篇
  2024年   14篇
  2023年   27篇
  2020年   12篇
  2017年   12篇
  2016年   29篇
  2015年   55篇
  2014年   30篇
  2013年   30篇
  2012年   148篇
  2011年   165篇
  2009年   35篇
  2007年   13篇
  2006年   16篇
  2005年   203篇
  2004年   509篇
  2003年   473篇
  2002年   142篇
  2001年   75篇
  2000年   146篇
  1999年   75篇
  1994年   10篇
  1992年   41篇
  1991年   31篇
  1990年   37篇
  1989年   36篇
  1988年   37篇
  1987年   17篇
  1986年   27篇
  1985年   36篇
  1984年   30篇
  1983年   24篇
  1982年   16篇
  1981年   13篇
  1980年   19篇
  1979年   63篇
  1978年   44篇
  1977年   31篇
  1976年   31篇
  1975年   40篇
  1974年   59篇
  1973年   50篇
  1972年   51篇
  1971年   70篇
  1970年   56篇
  1969年   71篇
  1968年   60篇
  1967年   41篇
  1966年   56篇
  1965年   41篇
  1964年   11篇
排序方式: 共有3420条查询结果,搜索用时 15 毫秒
91.
92.
93.
Microbes have a fascinating repertoire of bioenergetic enzymes and a huge variety of electron transport chains to cope with very different environmental conditions, such as different oxygen concentrations, different electron acceptors, pH and salinity. However, all these electron transport chains cover the redox span from NADH + H+ as the most negative donor to oxygen/H2O as the most positive acceptor or increments thereof. The redox range more negative than −320 mV has been largely ignored. Here, we have summarized the recent data that unraveled a novel ion-motive electron transport chain, the Rnf complex, that energetically couples the cellular ferredoxin to the pyridine nucleotide pool. The energetics of the complex and its biochemistry, as well as its evolution and cellular function in different microbes, is discussed.  相似文献   
94.
MicroRNAs (miRNAs) are short ~21-nt non-coding RNA molecules that have been shown to regulate a number of biological processes. Previous reports have shown that overexpression of miR-128 in glioma cells inhibited cell proliferation. Literature also suggests that miR-128 negatively regulates prostate cancer cell invasion. Here, we show that overexpression of hsa-miR-128, a brain-enriched microRNA, induces apoptosis in HEK293T cells as elucidated by apoptosis assay, cell cycle changes, loss of mitochondrial membrane potential and multicaspase assay. By in silico analysis, we identified a putative target site within the 3′ untranslated region (UTR) of Bax, a proapoptotic member of the apoptosis pathway. We found that ectopic expression of hsa-miR-128 suppressed a luciferase reporter containing the Bax-3′ UTR and reduced the levels of Bax in HEK293T cells. Taken together, our study demonstrates that overexpression of hsa-miR-128 not only induces apoptosis in HEK293T cells but also is an endogenous regulator of Bax protein.  相似文献   
95.
Inflammasomes: current understanding and open questions   总被引:2,自引:2,他引:0  
The innate immune system relies on its capability to detect invading microbes, tissue damage, or stress via evolutionarily conserved receptors. The nucleotide-binding domain leucine-rich repeat (NLR)-containing family of pattern recognition receptors includes several proteins that drive inflammation in response to a wide variety of molecular patterns. In particular, the NLRs that participate in the formation of a molecular scaffold termed the “inflammasome” have been intensively studied in past years. Inflammasome activation by multiple types of tissue damage or by pathogen-associated signatures results in the autocatalytic cleavage of caspase-1 and ultimately leads to the processing and thus secretion of pro-inflammatory cytokines, most importantly interleukin (IL)-1β and IL-18. Here, we review the current knowledge of mechanisms leading to the activation of inflammasomes. In particular, we focus on the controversial molecular mechanisms that regulate NLRP3 signaling and highlight recent advancements in DNA sensing by the inflammasome receptor AIM2.  相似文献   
96.
In eukaryotes, cellular energy in the form of ATP is produced in the cytosol via glycolysis or in the mitochondria via oxidative phosphorylation and, in photosynthetic organisms, in the chloroplast via photophosphorylation. Transport of adenine nucleotides among cell compartments is essential and is performed mainly by members of the mitochondrial carrier family, among which the ADP/ATP carriers are the best known. This work reviews the carriers that transport adenine nucleotides into the organelles of eukaryotic cells together with their possible functions. We focus on novel mechanisms of adenine nucleotide transport, including mitochondrial carriers found in organelles such as peroxisomes, plastids, or endoplasmic reticulum and also mitochondrial carriers found in the mitochondrial remnants of many eukaryotic parasites of interest. The extensive repertoire of adenine nucleotide carriers highlights an amazing variety of new possible functions of adenine nucleotide transport across eukaryotic organelles.  相似文献   
97.
The non-receptor tyrosine kinase Src is a critical regulator of cytoskeletal contraction, cell adhesion, and migration. In normal cells, Src activity is stringently controlled by Csk-dependent phosphorylation of Src(Y530), and by Cullin-5-dependent ubiquitinylation, which affects active Src(pY419) exclusively, leading to its degradation by the proteosome. Previous work has shown that Src activity is also limited by Cdk5, a proline-directed kinase, which has been shown to phosphorylate Src(S75). Here we show that this phosphorylation promotes the ubiquitin-dependent degradation of Src, thus restricting the availability of active Src. We demonstrate that Src(S75) phosphorylation occurs in vivo in epithelial cells, and like ubiquitinylation, is associated only with active Src. Preventing Cdk5-dependent phosphorylation of Src(S75), by site-specific mutation of S75 or by Cdk5 inhibition or suppression, increases Src(Y419) phosphorylation and kinase activity, resulting in Src-dependent cytoskeletal changes. In transfected cells, ubiquitinylation of Src(S75A) is about 35% that of wild-type Src-V5, and its half-life is approximately 2.5-fold greater. Cdk5 suppression leads to a comparable decrease in the ubiquitinylation of endogenous Src and a similar increase in Src stability. Together, these findings demonstrate that Cdk5-dependent phosphorylation of Src(S75) is a physiologically significant mechanism of regulating intracellular Src activity.  相似文献   
98.
The protein kinase C (PKC) family of serine/threonine kinases consists of ten different isoforms grouped into three subfamilies, denoted classical, novel and atypical PKCs (aPKCs). The aPKCs, PKCι/λ and PKCζ serve important roles during development and in processes subverted in cancer such as cell and tissue polarity, cell proliferation, differentiation and apoptosis. In an effort to identify novel interaction partners for aPKCs, we performed a yeast two-hybrid screen with the regulatory domain of PKCι/λ as bait and identified the Krüppel-like factors family protein TIEG1 as a putative interaction partner for PKCι/λ. We confirmed the interaction of both aPKCs with TIEG1 in vitro and in cells, and found that both aPKCs phosphorylate the DNA-binding domain of TIEG1 on two critical residues. Interestingly, the aPKC-mediated phosphorylation of TIEG1 affected its DNA-binding activity, subnuclear localization and transactivation potential.  相似文献   
99.
The apicomplexan plastid and its evolution   总被引:1,自引:0,他引:1  
Protistan species belonging to the phylum Apicomplexa have a non-photosynthetic secondary plastid—the apicoplast. Although its tiny genome and even the entire nuclear genome has been sequenced for several organisms bearing the organelle, the reason for its existence remains largely obscure. Some of the functions of the apicoplast, including housekeeping ones, are significantly different from those of other plastids, possibly due to the organelle’s unique symbiotic origin.  相似文献   
100.
Translation initiation is a critical step in protein synthesis. Previously, two major mechanisms of initiation were considered as essential: prokaryotic, based on SD interaction; and eukaryotic, requiring cap structure and ribosomal scanning. Although discovered decades ago, cap-independent translation has recently been acknowledged as a widely spread mechanism in viruses, which may take place in some cellular mRNA translations. Moreover, it has become evident that translation can be initiated on the leaderless mRNA in all three domains of life. New findings demonstrate that other distinguishable types of initiation exist, including SD-independent in Bacteria and Archaea, and various modifications of 5′ end-dependent and internal initiation mechanisms in Eukarya. Since translation initiation has developed through the loss, acquisition, and modification of functional elements, all of which have been elevated by competition with viral translation in a large number of organisms of different complexity, more variation in initiation mechanisms can be anticipated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号