首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
现状及发展   18篇
研究方法   1篇
综合类   8篇
  2019年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1982年   1篇
  1979年   4篇
  1973年   2篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1965年   1篇
  1960年   1篇
  1955年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.
Menon TK  Ciotti JE 《Nature》1970,227(5258):579-581
As well as the high velocity expansion features already known in the inner parts of the galaxy, there also seem to be expansion features at low velocities. Two new features with velocities of -27 km s(-1) and -14 km s(-1) at a distance of about 4.5 kpc are identified in this article and their relationship to the other expanding features is discussed.  相似文献   
22.
The typically distinct phospholipid composition of the two leaflets of a membrane bilayer is generated and maintained by bi-directional transport (flip-flop) of lipids between the leaflets. Specific membrane proteins, termed lipid flippases, play an essential role in this transport process. Energy-independent flippases allow common phospholipids to equilibrate rapidly between the two monolayers and also play a role in the biosynthesis of a variety of glycoconjugates such as glycosphingolipids, N-glycoproteins, and glycosylphosphatidylinositol (GPI)-anchored proteins. ATP-dependent flippases, including members of a conserved subfamily of P-type ATPases and ATP-binding cassette transporters, mediate the net transfer of specific phospholipids to one leaflet of a membrane and are involved in the creation and maintenance of transbilayer lipid asymmetry of membranes such as the plasma membrane of eukaryotes. Energy-dependent flippases also play a role in the biosynthesis of glycoconjugates such as bacterial lipopolysaccharide. This review summarizes recent progress on the identification and characterization of the various flippases and the demonstration of their biological functions. Received 12 April 2006; received after revision 22 June 2006; accepted 30 August 2006  相似文献   
23.
Frank CG  Sanyal S  Rush JS  Waechter CJ  Menon AK 《Nature》2008,454(7204):E3-4; discussion E4-5
Protein N-glycosylation requires flipping of the glycolipid Man(5)GlcNAc(2)-diphosphate dolichol (Man(5)GlcNAc(2)-PP-Dol) across the endoplasmic reticulum (ER). Helenius et al. report genetic evidence suggesting that Rft1, an essential ER membrane protein in yeast, is required directly to translocate Man(5)GlcNAc(2)-PP-Dol. We now show that a specific ER protein(s), but not Rft1, is required to flip Man(5)GlcNAc(2)-PP-Dol in reconstituted vesicles. Rft1 may have a critical accessory role in translocating Man(5)GlcNAc(2)-PP-Dol in vivo, but the Man(5)GlcNAc(2)-PP-Dol flippase itself remains to be identified.  相似文献   
24.
25.
26.
V K Menon  A K Varma 《Experientia》1979,35(7):854-855
ATP-sulphurylase from an unicellular blue-green alga, Spirulina platensis was localized in the soluble fractions of cell-free homogenate, and it was stable for over 3 weeks at -6 degrees C.  相似文献   
27.
Recently, we identified recurrent gene fusions involving the 5' untranslated region of the androgen-regulated gene TMPRSS2 and the ETS (E26 transformation-specific) family genes ERG, ETV1 or ETV4 in most prostate cancers. Whereas TMPRSS2-ERG fusions are predominant, fewer TMPRSS2-ETV1 cases have been identified than expected on the basis of the frequency of high (outlier) expression of ETV1 (refs 3-13). Here we explore the mechanism of ETV1 outlier expression in human prostate tumours and prostate cancer cell lines. We identified previously unknown 5' fusion partners in prostate tumours with ETV1 outlier expression, including untranslated regions from a prostate-specific androgen-induced gene (SLC45A3) and an endogenous retroviral element (HERV-K_22q11.23), a prostate-specific androgen-repressed gene (C15orf21), and a strongly expressed housekeeping gene (HNRPA2B1). To study aberrant activation of ETV1, we identified two prostate cancer cell lines, LNCaP and MDA-PCa 2B, that had ETV1 outlier expression. Through distinct mechanisms, the entire ETV1 locus (7p21) is rearranged to a 1.5-megabase prostate-specific region at 14q13.3-14q21.1 in both LNCaP cells (cryptic insertion) and MDA-PCa 2B cells (balanced translocation). Because the common factor of these rearrangements is aberrant ETV1 overexpression, we recapitulated this event in vitro and in vivo, demonstrating that ETV1 overexpression in benign prostate cells and in the mouse prostate confers neoplastic phenotypes. Identification of distinct classes of ETS gene rearrangements demonstrates that dormant oncogenes can be activated in prostate cancer by juxtaposition to tissue-specific or ubiquitously active genomic loci. Subversion of active genomic regulatory elements may serve as a more generalized mechanism for carcinoma development. Furthermore, the identification of androgen-repressed and insensitive 5' fusion partners may have implications for the anti-androgen treatment of advanced prostate cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号