首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2928篇
  免费   18篇
  国内免费   4篇
系统科学   46篇
理论与方法论   55篇
现状及发展   1735篇
研究方法   223篇
综合类   831篇
自然研究   60篇
  2020年   14篇
  2018年   50篇
  2017年   38篇
  2016年   47篇
  2015年   32篇
  2014年   39篇
  2013年   38篇
  2012年   112篇
  2011年   164篇
  2010年   63篇
  2009年   23篇
  2008年   100篇
  2007年   86篇
  2006年   104篇
  2005年   103篇
  2004年   93篇
  2003年   79篇
  2002年   75篇
  2001年   49篇
  2000年   35篇
  1999年   33篇
  1992年   24篇
  1991年   21篇
  1990年   28篇
  1989年   16篇
  1988年   14篇
  1987年   30篇
  1986年   18篇
  1985年   26篇
  1984年   27篇
  1982年   29篇
  1981年   18篇
  1980年   31篇
  1979年   83篇
  1978年   69篇
  1977年   91篇
  1976年   21篇
  1975年   37篇
  1974年   95篇
  1973年   81篇
  1972年   102篇
  1971年   72篇
  1970年   88篇
  1969年   94篇
  1968年   68篇
  1967年   91篇
  1966年   76篇
  1965年   57篇
  1964年   16篇
  1960年   11篇
排序方式: 共有2950条查询结果,搜索用时 281 毫秒
731.
Plant oil is an important renewable resource for biodiesel production and for dietary consumption by humans and livestock. Through genetic mapping of the oil trait in plants, studies have reported multiple quantitative trait loci (QTLs) with small effects, but the molecular basis of oil QTLs remains largely unknown. Here we show that a high-oil QTL (qHO6) affecting maize seed oil and oleic-acid contents encodes an acyl-CoA:diacylglycerol acyltransferase (DGAT1-2), which catalyzes the final step of oil synthesis. We further show that a phenylalanine insertion in DGAT1-2 at position 469 (F469) is responsible for the increased oil and oleic-acid contents. The DGAT1-2 allele with F469 is ancestral, whereas the allele without F469 is a more recent mutant selected by domestication or breeding. Ectopic expression of the high-oil DGAT1-2 allele increases oil and oleic-acid contents by up to 41% and 107%, respectively. This work provides insights into the molecular basis of natural variation of oil and oleic-acid contents in plants and highlights DGAT as a promising target for increasing oil and oleic-acid contents in other crops.  相似文献   
732.
Chronic pancreatitis is a persistent inflammatory disease of the pancreas, in which the digestive protease trypsin has a fundamental pathogenetic role. Here we have analyzed the gene encoding the trypsin-degrading enzyme chymotrypsin C (CTRC) in German subjects with idiopathic or hereditary chronic pancreatitis. Two alterations in this gene, p.R254W and p.K247_R254del, were significantly overrepresented in the pancreatitis group, being present in 30 of 901 (3.3%) affected individuals but only 21 of 2,804 (0.7%) controls (odds ratio (OR) = 4.6; confidence interval (CI) = 2.6-8.0; P = 1.3 x 10(-7)). A replication study identified these two variants in 10 of 348 (2.9%) individuals with alcoholic chronic pancreatitis but only 3 of 432 (0.7%) subjects with alcoholic liver disease (OR = 4.2; CI = 1.2-15.5; P = 0.02). CTRC variants were also found in 10 of 71 (14.1%) Indian subjects with tropical pancreatitis but only 1 of 84 (1.2%) healthy controls (OR = 13.6; CI = 1.7-109.2; P = 0.0028). Functional analysis of the CTRC variants showed impaired activity and/or reduced secretion. The results indicate that loss-of-function alterations in CTRC predispose to pancreatitis by diminishing its protective trypsin-degrading activity.  相似文献   
733.
Dysfunction of the exocrine pancreas is observed in diabetes, but links between concurrent exocrine and endocrine pancreatic disease and contributing genetic factors are poorly characterized. We studied two families with diabetes and exocrine pancreatic dysfunction by genetic, physiological and in vitro functional studies. A genome-wide screen in Family 1 linked diabetes to chromosome 9q34 (maximal lod score 5.07). Using fecal elastase deficiency as a marker of exocrine pancreatic dysfunction refined the critical chromosomal region to 1.16 Mb (maximal lod score 11.6). Here, we identified a single-base deletion in the variable number of tandem repeats (VNTR)-containing exon 11 of the carboxyl ester lipase (CEL) gene, a major component of pancreatic juice and responsible for the duodenal hydrolysis of cholesterol esters. Screening subjects with maturity-onset diabetes of the young identified Family 2, with another single-base deletion in CEL and a similar phenotype with beta-cell failure and pancreatic exocrine disease. The in vitro catalytic activities of wild-type and mutant CEL protein were comparable. The mutant enzyme was, however, less stable and secreted at a lower rate. Furthermore, we found some evidence for an association between common insertions in the CEL VNTR and exocrine dysfunction in a group of 182 unrelated subjects with diabetes (odds ratio 4.2 (1.6, 11.5)). Our findings link diabetes to the disrupted function of a lipase in the pancreatic acinar cells.  相似文献   
734.
A comparative analysis of 40 Trypanosoma cruzi L1Tc elements showed that the 2A self-cleaving sequence described in viruses is present in them. Of these elements, 72% maintain the canonical 2A motif (DxExNPGP). A high percentage has a conserved point mutation within the motif that has not been previously described. In vitro and in vivo expression of reporter polyproteins showed that the L1Tc2A sequence is functional. Mutations within certain L1Tc2A sequences affect the efficiency of the cleavage. The data indicate that the L1Tc2A sequence may be influencing the L1Tc enzymatic machinery determining the composition and level of the translated products. The residues located immediately upstream of the 2A consensus sequence increase the cleaving efficiency and appear to stabilize the relative amount of translated products. These authors contributed equally to this work. Received 26 January 2006; received after revision 11 April 2006; accepted 21 April 2006  相似文献   
735.
736.
737.
Hereditary pancreatitis caused by triplication of the trypsinogen locus   总被引:12,自引:0,他引:12  
Hereditary pancreatitis has been reported to be caused by 'gain-of-function' missense mutations in the cationic trypsinogen gene (PRSS1). Here we report the triplication of a approximately 605-kb segment containing the PRSS1 gene on chromosome 7 in five families with hereditary pancreatitis. This triplication, which seems to result in a gain of trypsin through a gene dosage effect, represents a previously unknown molecular mechanism causing hereditary pancreatitis.  相似文献   
738.
Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression.  相似文献   
739.
DNA integrity checkpoint control was studied in the sea urchin early embryo. Treatment of the embryos with genotoxic agents such as methyl methanesulfonate (MMS) or bleomycin induced the activation of a cell cycle checkpoint as evidenced by the occurrence of a delay or an arrest in the division of the embryos and an inhibition of CDK1/cyclin B activating dephosphorylation. The genotoxic treatment was shown to induce DNA damage that depended on the genotoxic concentration and was correlated with the observed cell cycle delay. At low genotoxic concentrations, embryos were able to repair the DNA damage and recover from checkpoint arrest, whereas at high doses they underwent morphological and biochemical changes characteristic of apoptosis. Finally, extracts prepared from embryos were found to be capable of supporting DNA repair in vitro upon incubation with oligonucleotides mimicking damage. Taken together, our results demonstrate that sea urchin early embryos contain fully functional and activatable DNA damage checkpoints. Sea urchin embryos are discussed as a promising model to study the signaling pathways of cell cycle checkpoint, DNA repair and apoptosis, which upon deregulation play a significant role in the origin of cancer. Received 10 April 2007; accepted 23 April 2007  相似文献   
740.
Selective hydroxylation of aromatic compounds is among the most challenging chemical reactions in synthetic chemistry and has gained steadily increasing attention during recent years, particularly because of the use of hydroxylated aromatics as precursors for pharmaceuticals. Biocatalytic oxygen transfer by isolated enzymes or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. This review gives an overview of the different enzymes and mechanisms used to introduce oxygen atoms into aromatic molecules using either dioxygen (O2) or hydrogen peroxide (H2O2) as oxygen donors or indirect pathways via free radical intermediates. In this context, the article deals with Rieske-type and α-keto acid-dependent dioxygenases, as well as different non-heme monooxygenases (di-iron, pterin, and flavin enzymes), tyrosinase, laccase, and hydroxyl radical generating systems. The main emphasis is on the heme-containing enzymes, cytochrome P450 monooxygenases and peroxidases, including novel extracellular heme-thiolate haloperoxidases (peroxygenases), which are functional hybrids of both types of heme-biocatalysts. Received 11 August, 2006; received after revision 28 September 2006; accepted 9 November 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号