首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   1篇
  国内免费   2篇
系统科学   12篇
教育与普及   2篇
理论与方法论   1篇
现状及发展   59篇
研究方法   24篇
综合类   184篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
  2013年   2篇
  2012年   16篇
  2011年   7篇
  2010年   2篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   16篇
  2004年   8篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   12篇
  1999年   7篇
  1992年   5篇
  1991年   9篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   8篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   8篇
  1979年   11篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   8篇
  1974年   10篇
  1973年   1篇
  1972年   3篇
  1971年   7篇
  1970年   20篇
  1969年   6篇
  1968年   7篇
  1967年   5篇
  1966年   8篇
  1965年   1篇
排序方式: 共有282条查询结果,搜索用时 187 毫秒
131.
N W Davies 《Nature》1990,343(6256):375-377
Since their discovery in cardiac muscle, ATP-sensitive K+(KATP) channels have been identified in pancreatic beta-cells, skeletal muscle, smooth muscle and central neurons. The activity of KATP channels is inhibited by the presence of cytosolic ATP. Their wide distribution indicates that they could have important physiological roles that may vary between tissues. In muscle cells the role of K+ channels is to control membrane excitability and the duration of the action potential. In anoxic cardiac ventricular muscle KATP channels are believed to be responsible for shortening the action potential, and it has been proposed that a fall in ATP concentration during metabolic exhaustion increases the activity of KATP channels in skeletal muscle, which may reduce excitability. But the intracellular concentration of ATP in muscle is buffered by creatine phosphate to 5-10 mM, and changes little, even during sustained activity. This concentration is much higher than the intracellular ATP concentration required to half block the KATP-channel current in either cardiac muscle (0.1 mM) or skeletal muscle (0.14 mM), indicating that the open-state probability of KATP channels is normally very low in intact muscle. So it is likely that some additional means of regulating the activity of KATP channels exists, such as the binding of nucleotides other than ATP. Here I present evidence that a decrease in intracellular pH (pHi) markedly reduces the inhibitory effect of ATP on these channels in excised patches from frog skeletal muscle. Because sustained muscular activity can decrease pHi by almost 1 unit in the range at which KATP channels are most sensitive to pHi, it is likely that the activity of these channels in skeletal muscle is regulated by intracellular protons under physiological conditions.  相似文献   
132.
Self-cleaving viroid and newt RNAs may only be active as dimers   总被引:23,自引:0,他引:23  
  相似文献   
133.
134.
Haemodynamic shear stress activates a K+ current in vascular endothelial cells   总被引:35,自引:0,他引:35  
S P Olesen  D E Clapham  P F Davies 《Nature》1988,331(6152):168-170
The endothelial lining of blood vessels is subjected to a wide range of haemodynamically-generated shear-stress forces throughout the vascular system. In vivo and in vitro, endothelial cells change their morphology and biochemistry in response to shear stress in a force- and time-dependent way, or when a critical threshold is exceeded. The initial stimulus-response coupling mechanisms have not been identified, however. Recently, Lansman et al. described stretch-activated ion channels in endothelial cells and suggested that they could be involved in the response to mechanical forces generated by blood flow. The channels were relatively nonselective and were opened by membrane stretching induced by suction. Here we report whole-cell patch-clamp recordings of single arterial endothelial cells exposed to controlled levels of laminar shear stress in capillary flow tubes. A K+ selective, shear-stress-activated ionic current (designated Ik.s) was identified which is unlike previously described stretch-activated currents. Ik.s varies in magnitude and duration as a function of shear stress (half-maximal effect at 0.70 dyn cm-2), desensitizes slowly and recovers rapidly and fully on cessation of flow. Ik.s activity represents the earliest and fastest stimulus-response coupling of haemodynamic forces to endothelial cells yet found. We suggest that localized flow-activated hyperpolarization of endothelium involving Ik.s may participate in the regulation of vascular tone.  相似文献   
135.
Neurotransmission at most excitatory synapses in the brain operates through two types of glutamate receptor termed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors; these mediate the fast and slow components of excitatory postsynaptic potentials respectively. Activation of NMDA receptors can also lead to a long-lasting modification in synaptic efficiency at glutamatergic synapses; this is exemplified in the CA1 region of the hippocampus, where NMDA receptors mediate the induction of long-term potentiation (LTP). It is believed that in this region LTP is maintained by a specific increase in the AMPA receptor-mediated component of synaptic transmission. We now report, however, that a pharmacologically isolated NMDA receptor-mediated synaptic response can undergo robust, synapse-specific LTP. This finding has implications for neuropathologies such as epilepsy and neurodegeneration, in which excessive NMDA receptor activation has been implicated. It adds fundamentally to theories of synaptic plasticity because NMDA receptor activation may, in addition to causing increased synaptic efficiency, directly alter the plasticity of synapses.  相似文献   
136.
GABA autoreceptors regulate the induction of LTP.   总被引:19,自引:0,他引:19  
Understanding the mechanisms involved in long-term potentiation (LTP) should provide insights into the cellular and molecular basis of learning and memory in vertebrates. It has been established that in the CA1 region of the hippocampus the induction of LTP requires the transient activation of the N-methyl-D-aspartate (NMDA) receptor system. During low-frequency transmission, significant activation of this system is prevented by gamma-aminobutyric acid (GABA) mediated synaptic inhibition which hyperpolarizes neurons into a region where NMDA receptor-operated channels are substantially blocked by Mg2+ (refs. 5, 6). But during high-frequency transmission, mechanisms are evoked that provide sufficient depolarization of the postsynaptic membrane to reduce this block and thereby permit the induction of LTP. We now report that this critical depolarization is enabled because during high-frequency transmission GABA depresses its own release by an action on GABAB autoreceptors, which permits sufficient NMDA receptor activation for the induction of LTP. These findings demonstrate a role for GABAB receptors in synaptic plasticity.  相似文献   
137.
138.
Formation of proinsulin by immobilized Bacillus subtilis   总被引:3,自引:0,他引:3  
K Mosbach  S Birnbaum  K Hardy  J Davies  L Bülow 《Nature》1983,302(5908):543-545
There has been an increasing interest in the use of immobilized cells for the production of pharmaceuticals as well as for products such as high fructose syrup or ethanol. Some of these compounds are now produced on an industrial scale whereby the cells are used in a resting or growing state or in a nonviable form as natural carriers of the enzyme(s) involved in the synthesis. The advantages of immobilized cell technology should also apply to microorganisms modified by recombinant DNA techniques to produce a variety of eukaryotic proteins such as hormones. We describe here the properties of immobilized Bacillus subtilis cells carrying plasmids encoding rat proinsulin. Cell proliferation normally coupled to DNA replication is undesirable in immobilized cell systems as "clogging' of the system occurs due to cells growing outside the beads. Therefore, different ways were investigated to inhibit cell division while allowing continued protein synthesis. We found that the addition of certain antibiotics in the growth medium, such as novobiocin which inhibits DNA replication, fulfills these requirements, allowing proinsulin synthesis and excretion to take place over a period of several days.  相似文献   
139.
J D Davies  C J Batty  K Green 《Nature》1977,270(5639):667-671
The multi-disciplinary role of intermediate energy proton accelerators in pure and applied nuclear physics is discussed with particular reference to the experimental programmes at LAMPF (Los Alamos Meson Physics Facility) and SIN (Swiss Institute for Nuclear Research, Zurich).  相似文献   
140.
The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum.   总被引:11,自引:0,他引:11  
Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5' or 3' exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号