首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28881篇
  免费   84篇
  国内免费   158篇
系统科学   140篇
丛书文集   499篇
教育与普及   42篇
理论与方法论   100篇
现状及发展   13473篇
研究方法   1281篇
综合类   13192篇
自然研究   396篇
  2013年   269篇
  2012年   415篇
  2011年   812篇
  2010年   169篇
  2008年   524篇
  2007年   577篇
  2006年   578篇
  2005年   536篇
  2004年   538篇
  2003年   500篇
  2002年   501篇
  2001年   936篇
  2000年   867篇
  1999年   617篇
  1992年   597篇
  1991年   414篇
  1990年   486篇
  1989年   494篇
  1988年   460篇
  1987年   546篇
  1986年   474篇
  1985年   596篇
  1984年   484篇
  1983年   365篇
  1982年   341篇
  1981年   368篇
  1980年   462篇
  1979年   892篇
  1978年   760篇
  1977年   740篇
  1976年   612篇
  1975年   632篇
  1974年   845篇
  1973年   757篇
  1972年   780篇
  1971年   842篇
  1970年   1073篇
  1969年   814篇
  1968年   821篇
  1967年   796篇
  1966年   681篇
  1965年   472篇
  1964年   157篇
  1959年   249篇
  1958年   440篇
  1957年   292篇
  1956年   259篇
  1955年   246篇
  1954年   239篇
  1948年   162篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
951.
Engineering a mouse balancer chromosome.   总被引:15,自引:0,他引:15  
Balancer chromosomes are genetic reagents that are used in Drosophila melanogaster for stock maintenance and mutagenesis screens. Despite their utility, balancer chromosomes are rarely used in mice because they are difficult to generate using conventional methods. Here we describe the engineering of a mouse balancer chromosome with the Cre-loxP recombination system. The chromosome features a 24-centiMorgan (cM) inversion between Trp53 (also known as p53) and Wnt3 on mouse chromosome 11 that is recessive lethal and dominantly marked with a K14-Agouti transgene. When allelic to a wild-type chromosome, the inversion suppresses crossing over in the inversion interval, accompanied by elevated recombination in the flanking regions. The inversion functions as a balancer chromosome because it can be used to maintain a lethal mutation in the inversion interval as a self-sustaining trans-heterozygous stock. This strategy can be used to generate similar genetic reagents throughout the mouse genome. Engineering of visibly marked inversions and deficiencies is an important step toward functional analyses of the mouse genome and will facilitate large-scale mutagenesis programs.  相似文献   
952.
Altered growth and function of synoviocytes, the intimal cells which line joint cavities and tendon sheaths, occur in a number of skeletal diseases. Hyperplasia of synoviocytes is found in both rheumatoid arthritis and osteoarthritis, despite differences in the underlying aetiologies of the two disorders. We have studied the autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP; MIM 208250) to identify biological pathways that lead to synoviocyte hyperplasia, the principal pathological feature of this syndrome. Using a positional-candidate approach, we identified mutations in a gene (CACP) encoding a secreted proteoglycan as the cause of CACP. The CACP protein, which has previously been identified as both 'megakaryocyte stimulating factor precursor' and 'superficial zone protein', contains domains that have homology to somatomedin B, heparin-binding proteins, mucins and haemopexins. In addition to expression in joint synovium and cartilage, CACP is expressed in non-skeletal tissues including liver and pericardium. The similarity of CACP sequence to that of other protein families and the expression of CACP in non-skeletal tissues suggest it may have diverse biological activities.  相似文献   
953.
Multiple sclerosis (MS) is a complex chronic neurologic disease with a suspected autoimmune pathogenesis. Although there is evidence that the development of MS is determined by both environmental influences and genes, these factors are largely undefined, except for major histocompatibility (MHC) genes. Linkage analyses and association studies have shown that susceptibility to MS is associated with genes in the human histocompatibility leukocyte antigens (HLA) class II region, but the contribution of these genes to MS disease development less compared with their contribution to disorders such as insulin-dependent diabetes mellitus. Due to the strong linkage disequilibrium in the MHC class II region, it has not been possible to determine which gene(s) is responsible for the genetic predisposition. In transgenic mice, we have expressed three human components involved in T-cell recognition of an MS-relevant autoantigen presented by the HLA-DR2 molecule: DRA*0101/DRB1*1501 (HLA-DR2), an MHC class II candidate MS susceptibility genes found in individuals of European descent; a T-cell receptor (TCR) from an MS-patient-derived T-cell clone specific for the HLA-DR2 bound immunodominant myelin basic protein (MBP) 4102 peptide; and the human CD4 coreceptor. The amino acid sequence of the MBP 84-102 peptide is the same in both human and mouse MBP. Following administration of the MBP peptide, together with adjuvant and pertussis toxin, transgenic mice developed focal CNS inflammation and demyelination that led to clinical manifestations and disease courses resembling those seen in MS. Spontaneous disease was observed in 4% of mice. When DR2 and TCR double-transgenic mice were backcrossed twice to Rag2 (for recombination-activating gene 2)-deficient mice, the incidence of spontaneous disease increased, demonstrating that T cells specific for the HLA-DR2 bound MBP peptide are sufficient and necessary for development of disease. Our study provides evidence that HLA-DR2 can mediate both induced and spontaneous disease resembling MS by presenting an MBP self-peptide to T cells.  相似文献   
954.
Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Among the four loci causing AD-HSP identified so far, the SPG4 locus at chromosome 2p2-1p22 has been shown to account for 40-50% of all AD-HSP families. Using a positional cloning strategy based on obtaining sequence of the entire SPG4 interval, we identified a candidate gene encoding a new member of the AAA protein family, which we named spastin. Sequence analysis of this gene in seven SPG4-linked pedigrees revealed several DNA modifications, including missense, nonsense and splice-site mutations. Both SPG4 and its mouse orthologue were shown to be expressed early and ubiquitously in fetal and adult tissues. The sequence homologies and putative subcellular localization of spastin suggest that this ATPase is involved in the assembly or function of nuclear protein complexes.  相似文献   
955.
Mesolimbic dopamine-releasing neurons appear to be important in the brain reward system. One behavioural paradigm that supports this hypothesis is intracranial self-stimulation (ICS), during which animals repeatedly press a lever to stimulate their own dopamine-releasing neurons electrically. Here we study dopamine release from dopamine terminals in the nucleus accumbens core and shell in the brain by using rapid-responding voltammetric microsensors during electrical stimulation of dopamine cell bodies in the ventral tegmental area/substantia nigra brain regions. In rats in which stimulating electrode placement failed to elicit dopamine release in the nucleus accumbens, ICS behaviour was not learned. In contrast, ICS was acquired when stimulus trains evoked extracellular dopamine in either the core or the shell of the nucleus accumbens. In animals that could learn ICS, experimenter-delivered stimulation always elicited dopamine release. In contrast, extracellular dopamine was rarely observed during ICS itself. Thus, although activation of mesolimbic dopamine-releasing neurons seems to be a necessary condition for ICS, evoked dopamine release is actually diminished during ICS. Dopamine may therefore be a neural substrate for novelty or reward expectation rather than reward itself.  相似文献   
956.
Cancela JM  Churchill GC  Galione A 《Nature》1999,398(6722):74-76
Many hormones and neurotransmitters evoke Ca2+ release from intracellular stores, often triggering agonist-specific signatures of intracellular Ca2+ concentration. Inositol trisphosphate (InsP3) and cyclic adenosine 5'-diphosphate-ribose (cADPR) are established Ca2+-mobilizing messengers that activate Ca2+ release through intracellular InsP3 and ryanodine receptors, respectively. However, in pancreatic acinar cells, neither messenger can explain the complex pattern of Ca2+ signals triggered by the secretory hormone cholecystokinin (CCK). We show here that the Ca2+-mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP), an endogenous metabolite of beta-NADP, triggers a Ca2+ response that varies from short-lasting Ca2+ spikes to a complex mixture of short-lasting (1-2s) and long-lasting (0.2-1 min) Ca2+ spikes. Cells were significantly more sensitive to NAADP than to either cADPR or InsP3, whereas higher concentrations of NAADP selectively inactivated CCK-evoked Ca2+ signals in pancreatic acinar cells, indicating that NAADP may function as an intracellular messenger in mammalian cells.  相似文献   
957.
Moving protein heads for breakdown   总被引:2,自引:0,他引:2  
Scheffner M 《Nature》1999,398(6723):103-104
  相似文献   
958.
A capsaicin-receptor homologue with a high threshold for noxious heat   总被引:60,自引:0,他引:60  
Caterina MJ  Rosen TA  Tominaga M  Brake AJ  Julius D 《Nature》1999,398(6726):436-441
  相似文献   
959.
Trans-gender induction of hair follicles   总被引:24,自引:0,他引:24  
  相似文献   
960.
Hu X  Lazar MA 《Nature》1999,402(6757):93-96
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号