首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28863篇
  免费   82篇
  国内免费   158篇
系统科学   139篇
丛书文集   499篇
教育与普及   42篇
理论与方法论   100篇
现状及发展   13451篇
研究方法   1278篇
综合类   13198篇
自然研究   396篇
  2013年   269篇
  2012年   411篇
  2011年   810篇
  2010年   168篇
  2008年   523篇
  2007年   576篇
  2006年   576篇
  2005年   535篇
  2004年   538篇
  2003年   498篇
  2002年   499篇
  2001年   936篇
  2000年   865篇
  1999年   616篇
  1992年   595篇
  1991年   414篇
  1990年   486篇
  1989年   494篇
  1988年   460篇
  1987年   546篇
  1986年   474篇
  1985年   596篇
  1984年   484篇
  1983年   364篇
  1982年   340篇
  1981年   367篇
  1980年   462篇
  1979年   889篇
  1978年   757篇
  1977年   740篇
  1976年   611篇
  1975年   632篇
  1974年   845篇
  1973年   756篇
  1972年   779篇
  1971年   840篇
  1970年   1073篇
  1969年   813篇
  1968年   820篇
  1967年   795篇
  1966年   681篇
  1965年   472篇
  1964年   156篇
  1959年   249篇
  1958年   440篇
  1957年   292篇
  1956年   259篇
  1955年   246篇
  1954年   239篇
  1948年   162篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
351.
352.
Membrane remodelling plays an important role in cellular tasks such as endocytosis, vesiculation and protein sorting, and in the biogenesis of organelles such as the endoplasmic reticulum or the Golgi apparatus. It is well established that the remodelling process is aided by specialized proteins that can sense as well as create membrane curvature, and trigger tubulation when added to synthetic liposomes. Because the energy needed for such large-scale changes in membrane geometry significantly exceeds the binding energy between individual proteins and between protein and membrane, cooperative action is essential. It has recently been suggested that curvature-mediated attractive interactions could aid cooperation and complement the effects of specific binding events on membrane remodelling. But it is difficult to experimentally isolate curvature-mediated interactions from direct attractions between proteins. Moreover, approximate theories predict repulsion between isotropically curving proteins. Here we use coarse-grained membrane simulations to show that curvature-inducing model proteins adsorbed on lipid bilayer membranes can experience attractive interactions that arise purely as a result of membrane curvature. We find that once a minimal local bending is realized, the effect robustly drives protein cluster formation and subsequent transformation into vesicles with radii that correlate with the local curvature imprint. Owing to its universal nature, curvature-mediated attraction can operate even between proteins lacking any specific interactions, such as newly synthesized and still immature membrane proteins in the endoplasmic reticulum.  相似文献   
353.
Class 0 protostars, the youngest type of young stellar objects, show many signs of rapid development from their initial, spheroidal configurations, and therefore are studied intensively for details of the formation of protoplanetary disks within protostellar envelopes. At millimetre wavelengths, kinematic signatures of collapse have been observed in several such protostars, through observations of molecular lines that probe their outer envelopes. It has been suggested that one or more components of the proto-multiple system NGC 1333-IRAS 4 (refs 1, 2) may display signs of an embedded region that is warmer and denser than the bulk of the envelope. Here we report observations that reveal details of the core on Solar System dimensions. We detect in NGC 1333-IRAS 4B a rich emission spectrum of H2O, at wavelengths 20-37 microm, which indicates an origin in extremely dense, warm gas. We can model the emission as infall from a protostellar envelope onto the surface of a deeply embedded, dense disk, and therefore see the development of a protoplanetary disk. This is the only example of mid-infrared water emission from a sample of 30 class 0 objects, perhaps arising from a favourable orientation; alternatively, this may be an early and short-lived stage in the evolution of a protoplanetary disk.  相似文献   
354.
355.
Pearson DG  Parman SW  Nowell GM 《Nature》2007,449(7159):202-205
Although Earth's continental crust is thought to have been derived from the mantle, the timing and mode of crust formation have proven to be elusive issues. The area of preserved crust diminishes markedly with age, and this can be interpreted as being the result of either the progressive accumulation of new crust or the tectonic recycling of old crust. However, there is a disproportionate amount of crust of certain ages, with the main peaks being 1.2, 1.9, 2.7 and 3.3 billion years old; this has led to a third model in which the crust has grown through time in pulses, although peaks in continental crust ages could also record preferential preservation. The 187Re-187Os decay system is unique in its ability to track melt depletion events within the mantle and could therefore potentially link the crust and mantle differentiation records. Here we employ a laser ablation technique to analyse large numbers of osmium alloy grains to quantify the distribution of depletion ages in the Earth's upper mantle. Statistical analysis of these data, combined with other samples of the upper mantle, show that depletion ages are not evenly distributed but cluster in distinct periods, around 1.2, 1.9 and 2.7 billion years. These mantle depletion events coincide with peaks in the generation of continental crust and so provide evidence of coupled, global and pulsed mantle-crust differentiation, lending strong support to pulsed models of continental growth by means of large-scale mantle melting events.  相似文献   
356.
Genome sequence and analysis of the tuber crop potato   总被引:11,自引:0,他引:11  
Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.  相似文献   
357.
358.
Che H  Drake JF  Swisdak M 《Nature》2011,474(7350):184-187
During magnetic reconnection, the field lines must break and reconnect to release the energy that drives solar and stellar flares and other explosive events in space and in the laboratory. Exactly how this happens has been unclear, because dissipation is needed to break magnetic field lines and classical collisions are typically weak. Ion-electron drag arising from turbulence, dubbed 'anomalous resistivity', and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory support the anomalous resistivity idea but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report computer simulations that show that neither of the two previously favoured mechanisms controls how magnetic field lines reconnect in the plasmas of greatest interest, those in which the magnetic field dominates the energy budget. Rather, we find that when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that causes the rate of reconnection to increase abruptly. This filamentary web can be explored in the laboratory or in space with satellites that can measure the resulting electromagnetic turbulence.  相似文献   
359.
360.
The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ~34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5?km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1?km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号