首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41942篇
  免费   176篇
  国内免费   376篇
系统科学   518篇
丛书文集   835篇
教育与普及   110篇
理论与方法论   149篇
现状及发展   17817篇
研究方法   1600篇
综合类   20617篇
自然研究   848篇
  2014年   234篇
  2013年   532篇
  2012年   786篇
  2011年   1642篇
  2010年   495篇
  2009年   446篇
  2008年   922篇
  2007年   1081篇
  2006年   1076篇
  2005年   968篇
  2004年   834篇
  2003年   712篇
  2002年   713篇
  2001年   1220篇
  2000年   1217篇
  1999年   840篇
  1992年   759篇
  1991年   579篇
  1990年   625篇
  1989年   602篇
  1988年   580篇
  1987年   667篇
  1986年   601篇
  1985年   742篇
  1984年   609篇
  1983年   468篇
  1982年   457篇
  1981年   477篇
  1980年   586篇
  1979年   1195篇
  1978年   977篇
  1977年   981篇
  1976年   799篇
  1975年   859篇
  1974年   1173篇
  1973年   1023篇
  1972年   1028篇
  1971年   1149篇
  1970年   1430篇
  1969年   1132篇
  1968年   1120篇
  1967年   1123篇
  1966年   968篇
  1965年   705篇
  1959年   383篇
  1958年   635篇
  1957年   437篇
  1956年   373篇
  1955年   366篇
  1954年   352篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
931.
In 1670, the Bolognese mathematician Pietro Mengoli published his Speculationi di musica, a highly original work attempting to found the mathematical study of music on the anatomy of the ear. His anatomy was idiosyncratic and his mathematics extraordinarily complex, and he proposed a unique double mechanism of hearing. He analysed in detail the supposed behaviour of the subtle part of the air inside the ear, and the patterns of strokes made on the eardrum by simultaneous sounds. Most strikingly, he divided the musical octave into a continuous set of regions which he colour-coded to show their effects on a listener. His work did not find its way into the mainstream of seventeenth-century mathematical studies of music, but when examined in its context it has the potential to shed light on that discipline, as well as being of considerable interest in its own right. Here, I focus on the anatomical and mathematical basis of Mengoli's work.  相似文献   
932.
933.
The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrPC). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20–50, 100–200, and 300–400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrPC. STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrPC-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1–PrPC signaling.  相似文献   
934.
Phagocytosis mediated by the complement receptor CR3 (also known as integrin αMß2 or Mac-1) is regulated by the recruitment of talin to the cytoplasmic tail of the ß2 integrin subunit. Talin recruitment to this integrin is dependent on Rap1 activation. However, the mechanism by which Rap1 regulates this event and CR3-dependent phagocytosis remains largely unknown. In the present work, we examined the role of the Rap1 effector RIAM, a talin-binding protein, in the regulation of complement-mediated phagocytosis. Using the human myeloid cell lines HL-60 and THP-1, we determined that knockdown of RIAM impaired αMß2 integrin affinity changes induced by stimuli fMLP and LPS. Phagocytosis of complement-opsonized RBC particles, but not of IgG-opsonized RBC particles, was impaired in RIAM knockdown cells. Rap1 activation via EPAC induced by 8-pCPT-2′-O-Me-cAMP resulted in an increase of complement-mediated phagocytosis that was abrogated by knockdown of RIAM in HL-60 and THP-1 cell lines and in macrophages derived from primary monocytes. Furthermore, recruitment of talin to ß2 integrin during complement-mediated phagocytosis was reduced in RIAM knockdown cells. These results indicate that RIAM is a critical component of the phagocytosis machinery downstream of Rap1 and mediates its function by recruiting talin to the phagocytic complement receptors.  相似文献   
935.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.  相似文献   
936.
Links between cancer and stem cells have been proposed for many years. As the cancer stem cell (CSC) theory became widely studied, new methods were developed to culture and expand cancer cells with conserved determinants of “stemness”. These cells show increased ability to grow in suspension as spheres in serum-free medium supplemented with growth factors and chemicals. The physiological relevance of this phenomenon in established cancer cell lines remains unclear. Cell lines have traditionally been used to explore tumor biology and serve as preclinical models for the screening of potential therapeutic agents. Here, we grew cell-forming spheres (CFS) from 25 established colorectal cancer cell lines. The molecular and cellular characteristics of CFS were compared to the bulk of tumor cells. CFS could be isolated from 72 % of the cell lines. Both CFS and their parental CRC cell lines were highly tumorigenic. Compared to their parental cells, they showed similar expression of putative CSC markers. The ability of CRC cells to grow as CFS was greatly enhanced by prior treatment with 5-fluorouracil. At the molecular level, CFS and parental CRC cells showed identical gene mutations and very similar genomic profiles, although microarray analysis revealed changes in CFS gene expression that were independent of DNA copy-number. We identified a CFS gene expression signature common to CFS from all CRC cell lines, which was predictive of disease relapse in CRC patients. In conclusion, CFS models derived from CRC cell lines possess interesting phenotypic features that may have clinical relevance for drug resistance and disease relapse.  相似文献   
937.
938.
Oligodendrocytes are the myelin-forming cells in the central nervous system (CNS). These cells originate from oligodendrocyte precursor cells (OPCs) during development, and they migrate extensively from oligodendrogliogenic niches along the neural tube to colonise the entire CNS. Like many other such events, this migratory process is precisely regulated by a battery of positional and signalling cues that act via their corresponding receptors and that are expressed dynamically by OPCs. Here, we will review the cellular and molecular basis of this important event during embryonic and postnatal development, and we will discuss the relevance of the substantial number of OPCs existing in the adult CNS. Similarly, we will consider the behaviour of OPCs in normal and pathological conditions, especially in animal models of demyelination and of the demyelinating disease, multiple sclerosis. The spontaneous remyelination observed after damage in demyelinating pathologies has a limited effect. Understanding the cellular and molecular mechanisms underlying the biology of OPCs, particularly adult OPCs, should help in the design of neuroregenerative strategies to combat multiple sclerosis and other demyelinating diseases.  相似文献   
939.
940.
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号