首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   4篇
  国内免费   2篇
系统科学   4篇
理论与方法论   4篇
现状及发展   476篇
研究方法   66篇
综合类   250篇
自然研究   3篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2014年   9篇
  2013年   10篇
  2012年   36篇
  2011年   35篇
  2010年   17篇
  2009年   13篇
  2008年   45篇
  2007年   38篇
  2006年   33篇
  2005年   30篇
  2004年   18篇
  2003年   19篇
  2002年   30篇
  2001年   17篇
  2000年   20篇
  1999年   9篇
  1996年   7篇
  1992年   6篇
  1989年   6篇
  1988年   6篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1980年   11篇
  1979年   17篇
  1978年   13篇
  1977年   12篇
  1976年   14篇
  1975年   11篇
  1974年   11篇
  1973年   23篇
  1972年   9篇
  1971年   20篇
  1970年   12篇
  1969年   13篇
  1968年   11篇
  1967年   15篇
  1966年   18篇
  1965年   10篇
  1962年   7篇
  1960年   8篇
  1958年   6篇
  1957年   6篇
  1956年   6篇
  1955年   10篇
  1954年   6篇
  1946年   7篇
排序方式: 共有803条查询结果,搜索用时 15 毫秒
801.
The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During β(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of (100)Sn, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the β-decay of (100)Sn, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear β-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, (100)In, are well reproduced by modern, large-scale shell model calculations.  相似文献   
802.
Quantum nature of a strongly coupled single quantum dot-cavity system   总被引:1,自引:0,他引:1  
Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is strongly coupled to a cavity mode, it is possible to realize important quantum information processing tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots to monolithic optical cavities is a promising route to this end. However, validating the efficacy of quantum dots in quantum information applications requires confirmation of the quantum nature of the quantum-dot-cavity system in the strong-coupling regime. Here we find such confirmation by observing quantum correlations in photoluminescence from a photonic crystal nanocavity interacting with one, and only one, quantum dot located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and quantum-dot excitons is anticorrelated at the level of single quanta, proving that the mode is driven solely by the quantum dot despite an energy mismatch between cavity and excitons. When tuned to resonance, the exciton and cavity enter the strong-coupling regime of cavity QED and the quantum-dot exciton lifetime reduces by a factor of 145. The generated photon stream becomes antibunched, proving that the strongly coupled exciton/photon system is in the quantum regime. Our observations unequivocally show that quantum information tasks are achievable in solid-state cavity QED.  相似文献   
803.
Macroscopic quantum phenomena such as high-temperature superconductivity, colossal magnetoresistance, ferrimagnetism and ferromagnetism arise from a delicate balance of different interactions among electrons, phonons and spins on the nanoscale. The study of the interplay among these various degrees of freedom in strongly coupled electron-lattice systems is thus crucial to their understanding and for optimizing their properties. Charge-density-wave (CDW) materials, with their inherent modulation of the electron density and associated periodic lattice distortion, represent ideal model systems for the study of such highly cooperative phenomena. With femtosecond time-resolved techniques, it is possible to observe these interactions directly by abruptly perturbing the electronic distribution while keeping track of energy relaxation pathways and coupling strengths among the different subsystems. Numerous time-resolved experiments have been performed on CDWs, probing the dynamics of the electronic subsystem. However, the dynamics of the periodic lattice distortion have been only indirectly inferred. Here we provide direct atomic-level information on the structural dynamics by using femtosecond electron diffraction to study the quasi two-dimensional CDW system 1T-TaS(2). Effectively, we have directly observed the atomic motions that result from the optically induced change in the electronic spatial distribution. The periodic lattice distortion, which has an amplitude of ~0.1??, is suppressed by about 20% on a timescale (~250 femtoseconds) comparable to half the period of the corresponding collective mode. These highly cooperative, electronically driven atomic motions are accompanied by a rapid electron-phonon energy transfer (~350 femtoseconds) and are followed by fast recovery of the CDW (~4 picoseconds). The degree of cooperativity in the observed structural dynamics is remarkable and illustrates the importance of obtaining atomic-level perspectives of the processes directing the physics of strongly correlated systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号