首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
理论与方法论   1篇
现状及发展   3篇
研究方法   10篇
综合类   11篇
  2021年   1篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1999年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5?kilometres during the early Cenozoic (approximately 55?million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.  相似文献   
25.
The Pacific plate converges with northeastern Eurasia at a rate of 8-9 m per century along the Kamchatka, Kuril and Japan trenches. Along the southern Kuril trench, which faces the Japanese island of Hokkaido, this fast subduction has recurrently generated earthquakes with magnitudes of up to approximately 8 over the past two centuries. These historical events, on rupture segments 100-200 km long, have been considered characteristic of Hokkaido's plate-boundary earthquakes. But here we use deposits of prehistoric tsunamis to infer the infrequent occurrence of larger earthquakes generated from longer ruptures. Many of these tsunami deposits form sheets of sand that extend kilometres inland from the deposits of historical tsunamis. Stratigraphic series of extensive sand sheets, intercalated with dated volcanic-ash layers, show that such unusually large tsunamis occurred about every 500 years on average over the past 2,000-7,000 years, most recently approximately 350 years ago. Numerical simulations of these tsunamis are best explained by earthquakes that individually rupture multiple segments along the southern Kuril trench. We infer that such multi-segment earthquakes persistently recur among a larger number of single-segment events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号