首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26759篇
  免费   64篇
  国内免费   134篇
系统科学   175篇
丛书文集   311篇
教育与普及   63篇
理论与方法论   90篇
现状及发展   12188篇
研究方法   1231篇
综合类   12525篇
自然研究   374篇
  2012年   436篇
  2011年   785篇
  2010年   164篇
  2009年   157篇
  2008年   462篇
  2007年   538篇
  2006年   551篇
  2005年   551篇
  2004年   529篇
  2003年   471篇
  2002年   506篇
  2001年   882篇
  2000年   848篇
  1999年   574篇
  1992年   509篇
  1991年   409篇
  1990年   444篇
  1989年   410篇
  1988年   401篇
  1987年   438篇
  1986年   448篇
  1985年   531篇
  1984年   461篇
  1983年   361篇
  1982年   330篇
  1981年   349篇
  1980年   389篇
  1979年   912篇
  1978年   733篇
  1977年   647篇
  1976年   573篇
  1975年   582篇
  1974年   747篇
  1973年   632篇
  1972年   645篇
  1971年   792篇
  1970年   1005篇
  1969年   716篇
  1968年   686篇
  1967年   748篇
  1966年   622篇
  1965年   442篇
  1964年   157篇
  1959年   243篇
  1958年   415篇
  1957年   295篇
  1956年   258篇
  1955年   220篇
  1954年   212篇
  1948年   185篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
311.
312.
Shim JH  Haule K  Kotliar G 《Nature》2007,446(7135):513-516
Although the nuclear properties of the late actinides (plutonium, americium and curium) are fully understood and widely applied to energy generation, their solid-state properties do not fit within standard models and are the subject of active research. Plutonium displays phases with enormous volume differences, and both its Pauli-like magnetic susceptibility and resistivity are an order of magnitude larger than those of simple metals. Curium is also highly resistive, but its susceptibility is Curie-like at high temperatures and orders antiferromagnetically at low temperatures. The anomalous properties of the late actinides stem from the competition between itinerancy and localization of their f-shell electrons, which makes these elements strongly correlated materials. A central problem in this field is to understand the mechanism by which these conflicting tendencies are resolved in such materials. Here we identify the electronic mechanisms responsible for the anomalous behaviour of late actinides, revisiting the concept of valence using a theoretical approach that treats magnetism, Kondo screening, atomic multiplet effects and crystal field splitting on the same footing. We find that the ground state in plutonium is a quantum superposition of two distinct atomic valences, whereas curium settles into a magnetically ordered single valence state at low temperatures. The f(7) configuration of curium is contrasted with the multiple valences of the plutonium ground state, which we characterize by a valence histogram. The balance between the Kondo screening and magnetism is controlled by the competition between spin-orbit coupling, the strength of atomic multiplets and the degree of itinerancy. Our approach highlights the electronic origin of the bonding anomalies in plutonium, and can be applied to predict generalized valences and the presence or absence of magnetism in other compounds starting from first principles.  相似文献   
313.
Plantenberg JH  de Groot PC  Harmans CJ  Mooij JE 《Nature》2007,447(7146):836-839
Quantum computation requires quantum logic gates that use the interaction within pairs of quantum bits (qubits) to perform conditional operations. Superconducting qubits may offer an attractive route towards scalable quantum computing. In previous experiments on coupled superconducting qubits, conditional gate behaviour and entanglement were demonstrated. Here we demonstrate selective execution of the complete set of four different controlled-NOT (CNOT) quantum logic gates, by applying microwave pulses of appropriate frequency to a single pair of coupled flux qubits. All two-qubit computational basis states and their superpositions are used as input, while two independent single-shot SQUID detectors measure the output state, including qubit-qubit correlations. We determined the gate's truth table by directly measuring the state transfer amplitudes and by acquiring the relevant quantum phase shift using a Ramsey-like interference experiment. The four conditional gates result from the symmetry of the qubits in the pair: either qubit can assume the role of control or target, and the gate action can be conditioned on either the 0-state or the 1-state. These gates are now sufficiently characterized to be used in quantum algorithms, and together form an efficient set of versatile building blocks.  相似文献   
314.
A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.  相似文献   
315.
The superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (T(c)) in conventional BCS superconductors. In underdoped high-T(c) superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above T(c) (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above T(c) is one of the central questions in high-T(c) research. Although some experimental evidence suggests that the two gaps are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap that opens at T(c) and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments.  相似文献   
316.
317.
318.
Smith CG  Aylward AD  Millward GH  Miller S  Moore LE 《Nature》2007,445(7126):399-401
The upper atmospheres of the four Solar System giant planets exhibit high temperatures that cannot be explained by the absorption of sunlight. In the case of Saturn the temperatures predicted by models of solar heating are approximately 200 K, compared to temperatures of approximately 400 K observed independently in the polar regions and at 30 degrees latitude. This unexplained 'energy crisis' represents a major gap in our understanding of these planets' atmospheres. An important candidate for the source of the missing energy is the magnetosphere, which injects energy mostly in the polar regions of the planet. This polar energy input is believed to be sufficient to explain the observed temperatures, provided that it is efficiently redistributed globally by winds, a process that is not well understood. Here we show, using a numerical model, that the net effect of the winds driven by the polar energy inputs is not to heat but to cool the low-latitude thermosphere. This surprising result allows us to rule out known polar energy inputs as the solution to the energy crisis at Saturn. There is either an unknown--and large--source of polar energy, or, more probably, some other process heats low latitudes directly.  相似文献   
319.
Symbolic arithmetic knowledge without instruction   总被引:1,自引:0,他引:1  
Gilmore CK  McCarthy SE  Spelke ES 《Nature》2007,447(7144):589-591
Symbolic arithmetic is fundamental to science, technology and economics, but its acquisition by children typically requires years of effort, instruction and drill. When adults perform mental arithmetic, they activate nonsymbolic, approximate number representations, and their performance suffers if this nonsymbolic system is impaired. Nonsymbolic number representations also allow adults, children, and even infants to add or subtract pairs of dot arrays and to compare the resulting sum or difference to a third array, provided that only approximate accuracy is required. Here we report that young children, who have mastered verbal counting and are on the threshold of arithmetic instruction, can build on their nonsymbolic number system to perform symbolic addition and subtraction. Children across a broad socio-economic spectrum solved symbolic problems involving approximate addition or subtraction of large numbers, both in a laboratory test and in a school setting. Aspects of symbolic arithmetic therefore lie within the reach of children who have learned no algorithms for manipulating numerical symbols. Our findings help to delimit the sources of children's difficulties learning symbolic arithmetic, and they suggest ways to enhance children's engagement with formal mathematics.  相似文献   
320.
Class 0 protostars, the youngest type of young stellar objects, show many signs of rapid development from their initial, spheroidal configurations, and therefore are studied intensively for details of the formation of protoplanetary disks within protostellar envelopes. At millimetre wavelengths, kinematic signatures of collapse have been observed in several such protostars, through observations of molecular lines that probe their outer envelopes. It has been suggested that one or more components of the proto-multiple system NGC 1333-IRAS 4 (refs 1, 2) may display signs of an embedded region that is warmer and denser than the bulk of the envelope. Here we report observations that reveal details of the core on Solar System dimensions. We detect in NGC 1333-IRAS 4B a rich emission spectrum of H2O, at wavelengths 20-37 microm, which indicates an origin in extremely dense, warm gas. We can model the emission as infall from a protostellar envelope onto the surface of a deeply embedded, dense disk, and therefore see the development of a protoplanetary disk. This is the only example of mid-infrared water emission from a sample of 30 class 0 objects, perhaps arising from a favourable orientation; alternatively, this may be an early and short-lived stage in the evolution of a protoplanetary disk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号