首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   7篇
  国内免费   3篇
系统科学   12篇
教育与普及   1篇
理论与方法论   14篇
现状及发展   95篇
研究方法   96篇
综合类   252篇
自然研究   20篇
  2020年   5篇
  2019年   2篇
  2018年   9篇
  2017年   7篇
  2016年   9篇
  2015年   10篇
  2014年   10篇
  2013年   12篇
  2012年   32篇
  2011年   55篇
  2010年   14篇
  2009年   13篇
  2008年   35篇
  2007年   30篇
  2006年   43篇
  2005年   34篇
  2004年   43篇
  2003年   22篇
  2002年   34篇
  2001年   11篇
  2000年   19篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1970年   1篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1965年   1篇
  1959年   1篇
  1947年   3篇
  1946年   1篇
  1945年   2篇
排序方式: 共有490条查询结果,搜索用时 15 毫秒
41.
42.
Genome shuffling leads to rapid phenotypic improvement in bacteria   总被引:51,自引:0,他引:51  
For millennia, selective breeding, on the basis of biparental mating, has led to the successful improvement of plants and animals to meet societal needs. At a molecular level, DNA shuffling mimics, yet accelerates, evolutionary processes, and allows the breeding and improvement of individual genes and subgenomic DNA fragments. We describe here whole-genome shuffling; a process that combines the advantage of multi-parental crossing allowed by DNA shuffling with the recombination of entire genomes normally associated with conventional breeding. We show that recursive genomic recombination within a population of bacteria can efficiently generate combinatorial libraries of new strains. When applied to a population of phenotypically selected bacteria, many of these new strains show marked improvements in the selected phenotype. We demonstrate the use of this approach through the rapid improvement of tylosin production from Streptomyces fradiae. This approach has the potential to facilitate cell and metabolic engineering and provide a non-recombinant alternative to the rapid production of improved organisms.  相似文献   
43.
Tavaré S  Marshall CR  Will O  Soligo C  Martin RD 《Nature》2002,416(6882):726-729
Divergence times estimated from molecular data often considerably predate the earliest known fossil representatives of the groups studied. For the order Primates, molecular data calibrated with various external fossil dates uniformly suggest a mid-Cretaceous divergence from other placental mammals, some 90 million years (Myr) ago, whereas the oldest known fossil primates are from the basal Eocene epoch (54-55 Myr ago). The common ancestor of primates should be earlier than the oldest known fossils, but adequate quantification is needed to interpret possible discrepancies between molecular and palaeontological estimates. Here we present a new statistical method, based on an estimate of species preservation derived from a model of the diversification pattern, that suggests a Cretaceous last common ancestor of primates, approximately 81.5 Myr ago, close to the initial divergence time inferred from molecular data. It also suggests that no more than 7% of all primate species that have ever existed are known from fossils. The approach unites all the available palaeontological methods of timing evolutionary events: the fossil record, extant species and clade diversification models.  相似文献   
44.
The relationship between the neurosensory photoreceptors and the adjacent retinal pigment epithelium (RPE) controls not only normal retinal function, but also the pathogenesis of hereditary retinal degenerations. The molecular bases for both primary photoreceptor and RPE diseases that cause blindness have been identified. Gene therapy has been used successfully to slow degeneration in rodent models of primary photoreceptor diseases, but efficacy of gene therapy directed at photoreceptors and RPE in a large-animal model of human disease has not been reported. Here we study one of the most clinically severe retinal degenerations, Leber congenital amaurosis (LCA). LCA causes near total blindness in infancy and can result from mutations in RPE65 (LCA, type II; MIM 180069 and 204100). A naturally occurring animal model, the RPE65-/- dog, suffers from early and severe visual impairment similar to that seen in human LCA. We used a recombinant adeno-associated virus (AAV) carrying wild-type RPE65 (AAV-RPE65) to test the efficacy of gene therapy in this model. Our results indicate that visual function was restored in this large animal model of childhood blindness.  相似文献   
45.
Self-assembled structures having a regular hollow icosahedral form (such as those observed for proteins of virus capsids) can occur as a result of biomineralization processes, but are extremely rare in mineral crystallites. Compact icosahedra made from a boron oxide have been reported, but equivalent structures made of synthetic organic components such as surfactants have not hitherto been observed. It is, however, well known that lipids, as well as mixtures of anionic and cationic single chain surfactants, can readily form bilayers that can adopt a variety of distinct geometric forms: they can fold into soft vesicles or random bilayers (the so-called sponge phase) or form ordered stacks of flat or undulating membranes. Here we show that in salt-free mixtures of anionic and cationic surfactants, such bilayers can self-assemble into hollow aggregates with a regular icosahedral shape. These aggregates are stabilized by the presence of pores located at the vertices of the icosahedra. The resulting structures have a size of about one micrometre and mass of about 1010 daltons, making them larger than any known icosahedral protein assembly or virus capsid. We expect the combination of wall rigidity and holes at vertices of these icosahedral aggregates to be of practical value for controlled drug or DNA release.  相似文献   
46.
Rupert PB  Ferré-D'Amaré AR 《Nature》2001,410(6830):780-786
The hairpin ribozyme catalyses sequence-specific cleavage of RNA. The active site of this natural RNA results from the docking of two irregular helices: stems A and B. One strand of stem A harbours the scissile bond. The 2.4 A resolution structure of a hairpin ribozyme-inhibitor complex reveals that the ribozyme aligns the 2'-OH nucleophile and the 5'-oxo leaving group by twisting apart the nucleotides that flank the scissile phosphate. The base of the nucleotide preceding the cleavage site is stacked within stem A; the next nucleotide, a conserved guanine, is extruded from stem A and accommodated by a highly complementary pocket in the minor groove of stem B. Metal ions are absent from the active site. The bases of four conserved purines are positioned potentially to serve as acid-base catalysts. This is the first structure determination of a fully assembled ribozyme active site that catalyses a phosphodiester cleavage without recourse to metal ions.  相似文献   
47.
Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.  相似文献   
48.
49.
The effect of high-density lipoprotein (HDL) in protecting against atherosclerosis is usually attributed to its role in 'reverse cholesterol transport'. In this process, HDL particles mediate the efflux and the transport of cholesterol from peripheral cells to the liver for further metabolism and bile excretion. Thus, cell-surface receptors for HDL on hepatocytes are chief partners in the regulation of cholesterol homeostasis. A high-affinity HDL receptor for apolipoprotein A-I (apoA-I) was previously identified on the surface of hepatocytes. Here we show that this receptor is identical to the beta-chain of ATP synthase, a principal protein complex of the mitochondrial inner membrane. Different experimental approaches confirm this ectopic localization of components of the ATP synthase complex and the presence of ATP hydrolase activity at the hepatocyte cell surface. Receptor stimulation by apoA-I triggers the endocytosis of holo-HDL particles (protein plus lipid) by a mechanism that depends strictly on the generation of ADP. We confirm this effect on endocytosis in perfused rat liver ex vivo by using a specific inhibitor of ATP synthase. Thus, membrane-bound ATP synthase has a previously unsuspected role in modulating the concentrations of extracellular ADP and is regulated by a principal plasma apolipoprotein.  相似文献   
50.
Individuals with hereditary hemochromatosis suffer from systemic iron overload due to duodenal hyperabsorption. Most cases arise from a founder mutation in HFE (845G-->A; ref. 2) that results in the amino-acid substitution C282Y and prevents the association of HFE with beta2-microglobulin. Mice homozygous with respect to a null allele of Hfe (Hfe-/-) or homozygous with respect to the orthologous 882G-->A mutation (Hfe(845A/845A)) develop iron overload that recapitulates hereditary hemochromatosis in humans, confirming that hereditary hemochromatosis arises from loss of HFE function. Much work has focused on an exclusive role for the intestine in hereditary hemochromatosis. HFE deficiency in intestinal crypt cells is thought to cause intestinal iron deficiency and greater expression of iron transporters such as SLC11A2 (also called DMT1, DCT1 and NRAMP2) and SLC11A3 (also called IREG1, ferroportin and MTP1; ref. 3). Published data on the expression of these transporters in the duodenum of HFE-deficient mice and humans are contradictory. In this report, we used a custom microarray to assay changes in duodenal and hepatic gene expression in Hfe-deficient mice. We found unexpected alterations in the expression of Slc39a1 (mouse ortholog of SLC11A3) and Cybrd1, which encode key iron transport proteins, and Hamp (hepcidin antimicrobial peptide), a hepatic regulator of iron transport. We propose that inappropriate regulatory cues from the liver underlie greater duodenal iron absorption, possibly involving the ferric reductase Cybrd1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号