首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   0篇
系统科学   3篇
理论与方法论   3篇
现状及发展   23篇
研究方法   11篇
综合类   138篇
自然研究   6篇
  2022年   1篇
  2016年   1篇
  2015年   4篇
  2013年   6篇
  2012年   19篇
  2011年   38篇
  2010年   10篇
  2008年   31篇
  2007年   21篇
  2006年   15篇
  2005年   9篇
  2004年   5篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
171.
172.
Dislocation multi-junctions and strain hardening   总被引:2,自引:0,他引:2  
At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.  相似文献   
173.
Lundeen JS  Sutherland B  Patel A  Stewart C  Bamber C 《Nature》2011,474(7350):188-191
The wavefunction is the complex distribution used to completely describe a quantum system, and is central to quantum theory. But despite its fundamental role, it is typically introduced as an abstract element of the theory with no explicit definition. Rather, physicists come to a working understanding of the wavefunction through its use to calculate measurement outcome probabilities by way of the Born rule. At present, the wavefunction is determined through tomographic methods, which estimate the wavefunction most consistent with a diverse collection of measurements. The indirectness of these methods compounds the problem of defining the wavefunction. Here we show that the wavefunction can be measured directly by the sequential measurement of two complementary variables of the system. The crux of our method is that the first measurement is performed in a gentle way through weak measurement, so as not to invalidate the second. The result is that the real and imaginary components of the wavefunction appear directly on our measurement apparatus. We give an experimental example by directly measuring the transverse spatial wavefunction of a single photon, a task not previously realized by any method. We show that the concept is universal, being applicable to other degrees of freedom of the photon, such as polarization or frequency, and to other quantum systems--for example, electron spins, SQUIDs (superconducting quantum interference devices) and trapped ions. Consequently, this method gives the wavefunction a straightforward and general definition in terms of a specific set of experimental operations. We expect it to expand the range of quantum systems that can be characterized and to initiate new avenues in fundamental quantum theory.  相似文献   
174.
Membrane co-transport proteins that use a five-helix inverted repeat motif have recently emerged as one of the largest structural classes of secondary active transporters. However, despite many structural advances there is no clear evidence of how ion and substrate transport are coupled. Here we report a comprehensive study of the sodium/galactose transporter from Vibrio parahaemolyticus (vSGLT), consisting of molecular dynamics simulations, biochemical characterization and a new crystal structure of the inward-open conformation at a resolution of 2.7??. Our data show that sodium exit causes a reorientation of transmembrane helix 1 that opens an inner gate required for substrate exit, and also triggers minor rigid-body movements in two sets of transmembrane helical bundles. This cascade of events, initiated by sodium release, ensures proper timing of ion and substrate release. Once set in motion, these molecular changes weaken substrate binding to the transporter and allow galactose readily to enter the intracellular space. Additionally, we identify an allosteric pathway between the sodium-binding sites, the unwound portion of transmembrane helix 1 and the substrate-binding site that is essential in the coupling of co-transport.  相似文献   
175.
STING is a direct innate immune sensor of cyclic di-GMP   总被引:1,自引:0,他引:1  
  相似文献   
176.
Drought-tolerant maize gets US debut   总被引:1,自引:0,他引:1  
Tollefson J 《Nature》2011,469(7329):144
  相似文献   
177.
Tollefson J 《Nature》2011,469(7331):457-458
  相似文献   
178.
Tollefson J 《Nature》2011,478(7369):300
  相似文献   
179.
180.
Tollefson J 《Nature》2008,451(7177):380-381
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号