首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   3篇
  国内免费   1篇
丛书文集   1篇
理论与方法论   5篇
现状及发展   34篇
研究方法   27篇
综合类   85篇
自然研究   3篇
  2023年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   16篇
  2010年   3篇
  2009年   3篇
  2008年   15篇
  2007年   15篇
  2006年   21篇
  2005年   13篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1986年   1篇
  1982年   1篇
  1979年   2篇
  1968年   2篇
  1965年   1篇
  1961年   1篇
  1946年   5篇
  1945年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
2.
PTC124 targets genetic disorders caused by nonsense mutations   总被引:1,自引:0,他引:1  
Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.  相似文献   
3.
4.
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.  相似文献   
5.
通过系统的模型试验研究了中,低佛氏数下急流越过矩形分流墩,墩后通大气的情况下,墩体壁压及其空化可能性,得到了墩顶挑射流态下,墩上游和墩体壁压分布规律;分析了墩体阻力系数与相对墩高,收缩比及控制断面佛氏数的分布规律。试验结果证明,当墩后充分供气时,墩体产生空蚀的可能性极小。  相似文献   
6.
Le Galliard JF  Clobert J  Ferrière R 《Nature》2004,432(7016):502-505
Strong evidence for a genetic basis of variation in physical performance has accumulated. Considering one of the basic tenets of evolutionary physiology--that physical performance and darwinian fitness are tightly linked--one may expect phenotypes with exceptional physiological capacities to be promoted by natural selection. Why then does physical performance remain considerably variable in human and other animal populations? Our analysis of locomotor performance in the common lizard (Lacerta vivipara) demonstrates that initial endurance (running time to exhaustion measured at birth) is indeed highly heritable, but natural selection in favour of this trait can be unexpectedly weak. A manipulation of dietary conditions unravels a proximate mechanism explaining this pattern. Fully fed individuals experience a marked reversal of performance within only one month after birth: juveniles with low endurance catch up, whereas individuals with high endurance lose their advantage. In contrast, dietary restriction allows highly endurant neonates to retain their locomotor superiority as they age. Thus, the expression of a genetic predisposition to high physical performance strongly depends on the environment experienced early in life.  相似文献   
7.
8.
A missense mutation in Tbce causes progressive motor neuronopathy in mice   总被引:1,自引:0,他引:1  
Mice that are homozygous with respect to the progressive motor neuronopathy (pmn) mutation (chromosome 13) develop a progressive caudio-cranial degeneration of their motor axons from the age of two weeks and die four to six weeks after birth. The mutation is fully penetrant, and expressivity does not depend on the genetic background. Based on its pathological features, the pmn mutation has been considered an excellent model for the autosomal recessive proximal childhood form of spinal muscular atrophy (SMA). Previously, we demonstrated that the genes responsible for these disorders were not orthologous. Here, we identify the pmn mutation as resulting in a Trp524Gly substitution at the last residue of the tubulin-specific chaperone e (Tbce) protein that leads to decreased protein stability. Electron microscopy of the sciatic and phrenic nerves of affected mice showed a reduced number of microtubules, probably due to defective stabilization. Transgenic complementation with a wildtype Tbce cDNA restored a normal phenotype in mutant mice. Our observations indicate that Tbce is critical for the maintenance of microtubules in mouse motor axons, and suggest that altered function of tubulin cofactors might be implicated in human motor neuron diseases.  相似文献   
9.
Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.  相似文献   
10.
Watanabe H  Vriens J  Prenen J  Droogmans G  Voets T  Nilius B 《Nature》2003,424(6947):434-438
TRPV4 is a widely expressed cation channel of the 'transient receptor potential' (TRP) family that is related to the vanilloid receptor VR1 (TRPV1). It functions as a Ca2+ entry channel and displays remarkable gating promiscuity by responding to both physical stimuli (cell swelling, innoxious heat) and the synthetic ligand 4alphaPDD. An endogenous ligand for this channel has not yet been identified. Here we show that the endocannabinoid anandamide and its metabolite arachidonic acid activate TRPV4 in an indirect way involving the cytochrome P450 epoxygenase-dependent formation of epoxyeicosatrienoic acids. Application of 5',6'-epoxyeicosatrienoic acid at submicromolar concentrations activates TRPV4 in a membrane-delimited manner and causes Ca2+ influx through TRPV4-like channels in vascular endothelial cells. Activation of TRPV4 in vascular endothelial cells might therefore contribute to the relaxant effects of endocannabinoids and their P450 epoxygenase-dependent metabolites on vascular tone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号