首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   0篇
  国内免费   2篇
系统科学   1篇
丛书文集   2篇
教育与普及   1篇
理论与方法论   2篇
现状及发展   75篇
研究方法   22篇
综合类   82篇
自然研究   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   10篇
  2011年   12篇
  2010年   5篇
  2008年   12篇
  2007年   6篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   7篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1970年   6篇
  1969年   2篇
  1968年   4篇
  1967年   3篇
  1966年   4篇
  1965年   5篇
  1958年   3篇
  1957年   1篇
  1956年   1篇
  1955年   2篇
  1954年   3篇
  1947年   3篇
  1946年   1篇
  1945年   1篇
排序方式: 共有186条查询结果,搜索用时 656 毫秒
21.
22.
23.
Cyanobacteria, and the viruses (phages) that infect them, are significant contributors to the oceanic 'gene pool'. This pool is dynamic, and the transfer of genetic material between hosts and their phages probably influences the genetic and functional diversity of both. For example, photosynthesis genes of cyanobacterial origin have been found in phages that infect Prochlorococcus and Synechococcus, the numerically dominant phototrophs in ocean ecosystems. These genes include psbA, which encodes the photosystem II core reaction centre protein D1, and high-light-inducible (hli) genes. Here we show that phage psbA and hli genes are expressed during infection of Prochlorococcus and are co-transcribed with essential phage capsid genes, and that the amount of phage D1 protein increases steadily over the infective period. We also show that the expression of host photosynthesis genes declines over the course of infection and that replication of the phage genome is a function of photosynthesis. We thus propose that the phage genes are functional in photosynthesis and that they may be increasing phage fitness by supplementing the host production of these proteins.  相似文献   
24.
J H Kaplan  R J Hollis 《Nature》1980,288(5791):587-589
Coupled active transport of Na+ and K+ across cellular plasma membranes is mediated by (Na+ + K+)-stimulated Mg2+-dependent ATPase. Active cation transport by this Na pump involves a cyclic Na-dependent phosphorylation of the enzyme by intracellular ATP and hydrolytic dephosphorylation of the phosphoenzyme, stimulated by K+ (ref. 1). In human red blood cells, skeletal muscle and squid axons, replacement of extracellular K by Na results in a ouabain-sensitive efflux of Na coupled to an influx of extracellular Na. There is apparently no net Na movement nor net hydrolysis of ATP. The rate of Na:Na exchange is stimulated by increased levels of ADP and exchange transport is not observed in cells totally depleted of intracellular ATP. These characteristics suggest that the biochemical mechanism underlying the Na exchange mode of the Na pump involves phosphorylation of the enzyme by ATP (which requires intracellular Na) followed by its dephosphorylation by ADP. Such a reaction has been observed in partially purified (Na+ + K+) ATPase from a variety of sources and its dependence on Na concentration has been described (although not previously for the red cell enzyme). In the present work, intracellular ATP:ADP exchange reaction was initiated by photoreleased ATP following brief irradiation at 350 nm of ghosts containing caged-ATP. The ouabain-sensitive component of the ensuing ATP:ADP exchange reaction shows a biphasic response to extracellular Na. External Na in the range 0--10 mM has an inhibitory effect whilst increasing concentrations beyond this range stimulate the rate of exchange in a roughly linear fashion up to 100 mM Na. These results represent the first direct demonstration of the sidedness of the effects of Na on this partial sequence in the overall enzyme cycle and bear a qualitative resemblance to the Na effects on the Na-ATPase which occur in the absence of intracellular ADP in human red blood cells.  相似文献   
25.
26.
Summary The hydrolysis of acetylcholine chloride (0.01M) by frog's rectus extracts, is inhibited by low concentrations of 3318 CT (CI-50 3.2×10–7) and high concentrations of D.F.P. (CI-50 1.3×10–5). Inversely, the hydrolysis of butyrylcholine perchlorate is inhibited by low concentrations of D.F.P. (CI-50 3×10–9) and high concentrations of 3318 CT (CI-50 3×10–4). Both are inhibited by similar concentrations of neostigmine (CI-50 1.1×10–7 and 1.5×10–7). Frog's rectus thus contains true and pseudo-cholinesterases. The inhibitions produced by D.F.P. added to the muscle itself (and not the extract) correlates well with the potentiation of the corresponding ester. Sensitization to AcCh and to BuCh appears to be specifically related to the inhibition of Ac ChE for the former ester, of XChE for the second one.  相似文献   
27.
28.
Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.  相似文献   
29.
One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating gammaH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of gammaH2AX in vivo and efficiently dephosphorylates gammaH2AX in vitro. gammaH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets gammaH2AX after its displacement from DNA. The dephosphorylation of gammaH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.  相似文献   
30.
Summary Rabbit muscular globulins soluble between the ionic strengths 0.15 and 0.35 are, in an almost native state, the and myosins ofDubuisson. The extractability of both, and, by salt solutions is greatly reduced when the rabbit muscle has been stimulated to exhaustion or poisoned with the sodium salt of monobromacetic acid till a state of rigor is obtained. This reduction however does not proceed in an absolutely similar way for and, indicating probable functional differences between these two myosins. The other soluble muscular proteins are practically not affected, as far as the method permits this to be assertained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号