首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69329篇
  免费   184篇
  国内免费   291篇
系统科学   397篇
丛书文集   1498篇
教育与普及   149篇
理论与方法论   395篇
现状及发展   32522篇
研究方法   2287篇
综合类   31442篇
自然研究   1114篇
  2013年   515篇
  2012年   885篇
  2011年   1958篇
  2010年   412篇
  2008年   1140篇
  2007年   1255篇
  2006年   1270篇
  2005年   1275篇
  2004年   1321篇
  2003年   1178篇
  2002年   1219篇
  2001年   1839篇
  2000年   1710篇
  1999年   1179篇
  1992年   1131篇
  1991年   901篇
  1990年   970篇
  1989年   987篇
  1988年   936篇
  1987年   999篇
  1986年   1036篇
  1985年   1270篇
  1984年   985篇
  1983年   854篇
  1982年   782篇
  1981年   797篇
  1980年   973篇
  1979年   2146篇
  1978年   1798篇
  1977年   1768篇
  1976年   1359篇
  1975年   1489篇
  1974年   2064篇
  1973年   1800篇
  1972年   1871篇
  1971年   2187篇
  1970年   2868篇
  1969年   2228篇
  1968年   2096篇
  1967年   2176篇
  1966年   1874篇
  1965年   1402篇
  1964年   451篇
  1959年   808篇
  1958年   1383篇
  1957年   1020篇
  1956年   830篇
  1955年   781篇
  1954年   866篇
  1948年   535篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Plant mitochondrial carriers: an overview   总被引:15,自引:0,他引:15  
In the two last decades, biochemical studies using mitochondrial swelling experiments or direct solute uptake in isolated mitochondria have lead to the identification of different transport systems at the level of the plant mitochondrial inner membrane. Although most of them have been found to have similar features to those identified in animal mitochondria, some differences have been observed between plant and animal transporters. More recently, molecular biology studies have revealed that most of the mitochondrial exchanges are performed by nuclear encoded proteins, which form a superfamily. Members of this family have been reported in animals, yeast as well as plants. This review attempts to give an overview of the present knowledge concerning the biochemical and molecular characterisation of plant members of the mitochondrial carrier family and, when possible, a comparison with carriers from other organisms.  相似文献   
992.
Cathepsin A/protective protein [3.4.16.5], carboxypeptidase A, is a lysosomal serine protease with structural homology to yeast (Saccharomyces cerevisiae) carboxypeptidase Y. Cathepsin A is a member of the alpha/beta hydrolase fold family and has been suggested to share a common ancestral relationship with other alpha/beta hydrolase fold enzymes, such as cholinesterases. Several lines of evidence indicate that cathepsin A is a multicatalytic enzyme with deamidase and esterase in addition to carboxypeptidase activities. Cathepsin A was recently identified in human platelets as deamidase. In vitro, it hydrolyzes a variety of bioactive peptide hormones including tachykinins, suggesting that extralysosomal cathepsin A plays a role in regulation of bioactive peptide functions. Recent reports emphasize the lysosomal protective function of cathepsin A rather than its protease function. The protective function of cathepsin A is distinct from its catalytic function. Human lysosomal beta-galactosidase and neuraminidase exist as a high molecular weight enzyme complex, in which there is a 54-kDa glycoprotein termed 'lysosomal protective protein'. Based on cell culture studies, protective protein was found to protect both beta-galactosidase and neuraminidase from intralysosomal proteolysis by forming a multienzyme complex and was shown to be deficient in patients with galactosialidosis, a combined deficiency of beta-galactosidase and neuraminidase. Molecular cloning and gene expression studies have disclosed that protective protein is cathepsin A. The cathepsin A precursor has the potential to restore both beta-galactosidase and neuraminidase activities in fibroblasts from patients with galactosialidosis. Cathepsin A knockout mice showed a phenotype similar to human galactosialidosis and the deficient phenotype found in the mutant mice was corrected by transplanting erythroid precursor cells overexpressing cathepsin A. Collectively, these findings demonstrate the significance of cathepsin A as a key molecule in the onset of galactosialidosis and also highlight the therapeutic potential of the cathepsin A precursor for patients with galactosialidosis.  相似文献   
993.
Rat heart myocytes undergoing progressive damage demonstrate morphological changes of shortening and swelling followed by the formation of intracellular vacuoles and plasma membrane blebbing. The damaged myocytes displayed impaired N,N'-tetramethyl-p-phenyldiamine (TMPD) ascorbate-stimulated respiratory activity which was restored by the addition of reduced cytochrome c to the cell culture medium. To clarify the role played by cytochrome c in the impairment of cell respiration, polarographic, spectrophotometric and fluorescence as well as electron microscopy imaging experiments were performed. TMPD/ascorbate-stimulated respiratory activity returned to control levels, at approximately 20 microM cytochrome c, establishing the threshold below which the turnover rate by cytochrome c oxidase in the cell depends on cytochrome concentration. Mildly damaged cardiac myocytes, as indicated by cell shortening, retention of visible striations and free-fluorescein exclusion, together with the absence of lactate dehydrogenase leakage and exclusion of trypan blue, were able to oxidize exogenous cytochrome c and were permeable to fluorescein-conjugated cytochrome c. The results, while consistent with an early cytochrome c release observed at the beginning of cell death, elucidate the role played by cytochrome c in the kinetic control of mitochondrial electron transfer under pathological conditions, particularly those involving the terminal part of the respiratory chain. These data are the first to demonstrate that the sarcolemma of cardiac myocytes, damaged but still viable, is permeable to cytochrome c.  相似文献   
994.
Are elicitins cryptograms in plant-Oomycete communications?   总被引:13,自引:0,他引:13  
Stimulation of plant natural defenses is an important challenge in phytoprotection prospects. In that context, elicitins, which are small proteins secreted by Phytophthora and Pythium species, have been shown to induce a hypersensitive-like reaction in tobacco plants. Moreover, these plants become resistant to their pathogens, and thus this interaction constitutes an excellent model to investigate the signaling pathways leading to plant resistance. However, most plants are not reactive to elicitins, although they possess the functional signaling pathways involved in tobacco responses to elicitin. The understanding of factors involved in this reactivity is needed to develop agronomic applications. In this review, it is proposed that elicitins could interact with regulating cell wall proteins before they reach the plasma membrane. Consequently, the plant reactivity or nonreactivity status could result from the equilibrium reached during this interaction. The possibility of overexpressing the elicitins directly from genomic DNA in Pichia pastoris allows site-directed mutagenesis experiments and structure/function studies. The recent discovery of the sterol carrier activity of elicitins brings a new insight on their molecular activity. This constitutes a crucial property, since the formation of a sterol-elicitin complex is required to trigger the biological responses of tobacco cells and plants. Only the elicitins loaded with a sterol are able to bind to their plasmalemma receptor, which is assumed to be an allosteric calcium channel. Moreover, Phytophthora and Pythium do not synthesize the sterols required for their growth and their fructification, and elicitins may act as shuttles trapping the sterols from the host plants. Sequence analysis of elicitin genes from several Phytophthora species sheds unexpected light on the phylogenetic relationships among the genus, and suggests that the expression of elicitins is under tight regulatory control. Finally, general involvement of these lipid transfer proteins in the biology of Pythiaceae, and in plant defense responses, is discussed. A possible scheme for the coevolution between Phytophthora and tobacco plants is approached.  相似文献   
995.
Dexamethasone enhances CTLA-4 expression during T cell activation   总被引:4,自引:0,他引:4  
T cell activation is enhanced by the costimulatory interaction of B7 on antigen-presenting cells and CD28 on T cells, resulting in long-term T cell proliferation, differentiation and production of large amounts of cytokines, such as interleukin (IL)-2. CTLA-4 is a co-stimulation receptor that shares 31% homology with CD28 and binds B7 family members with higher affinity. CTLA-4 is transiently expressed intracellularly and on the cell surface following activation of T cells. We have studied the kinetics of CTLA-4 expression and the effects of dexamethasone on CTLA-4 expression during T cell activation in cultures of mouse spleen cells stimulated by a mixture of immobilized anti-CD3 and anti-CD28 monoclonal antibodies (anti-CD3/CD28 mAb) or concanavalin A (ConA). CTLA-4 expression peaked on day 2 and returned to background levels after 7 days. Dexamethasone was found to potentiate CTLA-4 expression in a dose-dependent manner with an EC50 effective concentration 50%) of about 10−8 M. In contrast, other immunosuppressive agents, such as rapamycin or cyclosporin A had no or an inhibitory effect on CTLA-4 expression, respectively. Dexamethasone also stimulated CD28 expression, but inhibited IL-2R expression during anti-CD3/CD28 mAb-induced mouse splenic T cell activation. Western blot analyses of lysates of activated mouse T cells showed that dexamethasone increased CTLA-4 protein levels twofold during anti-CD3/CD28 mAb-induced activation. Dexamethasone also enhanced CTLA-4 messenger RNA twofold as quantified by ribonuclease protection assay. The effects of dexamethasone on CTLA-4 expression were glucocorticoid-specific and completely inhibited by the glucocorticoid receptor antagonist mifepristone (RU486), indicating that the effect of dexamethasone on CTLA-4 expression is mediated through the glucocorticoid receptor. In conclusion, the immunosuppressive agent dexamethasone actually stimulates CTLA-4 expression, which is involved in downregulation of T cell activation. Received 19 May 1999; received after revision 13 July 1999; accepted 13 July 1999  相似文献   
996.
997.
998.
Megaloblastic anaemia 1 (MGA1, OMIM 261100) is a rare, autosomal recessive disorder characterized by juvenile megaloblastic anaemia, as well as neurological symptoms that may be the only manifestations. At the cellular level, MGA1 is characterized by selective intestinal vitamin B12 (B12, cobalamin) malabsorption. MGA1 occurs worldwide, but its prevalence is higher in several Middle Eastern countries and Norway, and highest in Finland (0.8/100,000). We previously mapped the MGA1 locus by linkage analysis in Finnish and Norwegian families to a 6-cM region on chromosome 10p12.1 (ref. 8). A functional candidate gene encoding the intrinsic factor (IF)-B12 receptor, cubilin, was recently cloned; the human homologue, CUBN, was mapped to the same region. We have now refined the MGA1 region by linkage disequilibrium (LD) mapping, fine-mapped CUBN and identified two independent disease-specific CUBN mutations in 17 Finnish MGA1 families. Our genetic and molecular data indicate that mutations in CUBN cause MGA1.  相似文献   
999.
High-resolution mapping of quantitative trait loci in outbred mice   总被引:21,自引:0,他引:21  
Screening the whole genome of a cross between two inbred animal strains has proved to be a powerful method for detecting genetic loci underlying quantitative behavioural traits, but the level of resolution offered by quantitative trait loci (QTL) mapping is still too coarse to permit molecular cloning of the genetic determinants. To achieve high-resolution mapping, we used an outbred stock of mice for which the entire genealogy is known. The heterogeneous stock (HS) was established 30 years ago from an eight-way cross of C57BL/6, BALB/c, RIII, AKR, DBA/2, I, A/J and C3H inbred mouse strains. At the time of the experiment reported here, the HS mice were at generation 58, theoretically offering at least a 30-fold increase in resolution for QTL mapping compared with a backcross or an F2 intercross. Using the HS mice we have mapped a QTL influencing a psychological trait in mice to a 0.8-cM interval on chromosome 1. This method allows simultaneous fine mapping of multiple QTLs, as shown by our report of a second QTL on chromosome 12. The high resolution possible with this approach makes QTLs accessible to positional cloning.  相似文献   
1000.
Notch signalling pathway mediates hair cell development in mammalian cochlea   总被引:10,自引:0,他引:10  
The mammalian cochlea contains an invariant mosaic of sensory hair cells and non-sensory supporting cells reminiscent of invertebrate structures such as the compound eye in Drosophila melanogaster. The sensory epithelium in the mammalian cochlea (the organ of Corti) contains four rows of mechanosensory hair cells: a single row of inner hair cells and three rows of outer hair cells. Each hair cell is separated from the next by an interceding supporting cell, forming an invariant and alternating mosaic that extends the length of the cochlear duct. Previous results suggest that determination of cell fates in the cochlear mosaic occurs via inhibitory interactions between adjacent progenitor cells (lateral inhibition). Cells populating the cochlear epithelium appear to constitute a developmental equivalence group in which developing hair cells suppress differentiation in their immediate neighbours through lateral inhibition. These interactions may be mediated through the Notch signalling pathway, a molecular mechanism that is involved in the determination of a variety of cell fates. Here we show that genes encoding the receptor protein Notch1 and its ligand, Jagged 2, are expressed in alternating cell types in the developing sensory epithelium. In addition, genetic deletion of Jag2 results in a significant increase in sensory hair cells, presumably as a result of a decrease in Notch activation. These results provide direct evidence for Notch-mediated lateral inhibition in a mammalian system and support a role for Notch in the development of the cochlear mosaic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号