首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31353篇
  免费   46篇
  国内免费   68篇
系统科学   154篇
丛书文集   717篇
教育与普及   79篇
理论与方法论   200篇
现状及发展   13501篇
研究方法   1347篇
综合类   15100篇
自然研究   369篇
  2013年   174篇
  2012年   419篇
  2011年   832篇
  2010年   180篇
  2008年   552篇
  2007年   539篇
  2006年   596篇
  2005年   591篇
  2004年   517篇
  2003年   567篇
  2002年   566篇
  2001年   978篇
  2000年   896篇
  1999年   598篇
  1992年   569篇
  1991年   462篇
  1990年   486篇
  1989年   489篇
  1988年   490篇
  1987年   498篇
  1986年   490篇
  1985年   599篇
  1984年   494篇
  1983年   404篇
  1982年   346篇
  1981年   340篇
  1980年   448篇
  1979年   967篇
  1978年   855篇
  1977年   846篇
  1976年   580篇
  1975年   630篇
  1974年   931篇
  1973年   785篇
  1972年   804篇
  1971年   1017篇
  1970年   1339篇
  1969年   1004篇
  1968年   945篇
  1967年   988篇
  1966年   829篇
  1965年   609篇
  1964年   148篇
  1959年   360篇
  1958年   522篇
  1957年   443篇
  1956年   366篇
  1955年   316篇
  1954年   363篇
  1948年   193篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
391.
Plantenberg JH  de Groot PC  Harmans CJ  Mooij JE 《Nature》2007,447(7146):836-839
Quantum computation requires quantum logic gates that use the interaction within pairs of quantum bits (qubits) to perform conditional operations. Superconducting qubits may offer an attractive route towards scalable quantum computing. In previous experiments on coupled superconducting qubits, conditional gate behaviour and entanglement were demonstrated. Here we demonstrate selective execution of the complete set of four different controlled-NOT (CNOT) quantum logic gates, by applying microwave pulses of appropriate frequency to a single pair of coupled flux qubits. All two-qubit computational basis states and their superpositions are used as input, while two independent single-shot SQUID detectors measure the output state, including qubit-qubit correlations. We determined the gate's truth table by directly measuring the state transfer amplitudes and by acquiring the relevant quantum phase shift using a Ramsey-like interference experiment. The four conditional gates result from the symmetry of the qubits in the pair: either qubit can assume the role of control or target, and the gate action can be conditioned on either the 0-state or the 1-state. These gates are now sufficiently characterized to be used in quantum algorithms, and together form an efficient set of versatile building blocks.  相似文献   
392.
A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.  相似文献   
393.
Ultracold atoms trapped by light offer robust quantum coherence and controllability, providing an attractive system for quantum information processing and for the simulation of complex problems in condensed matter physics. Many quantum information processing schemes require the manipulation and deterministic entanglement of individual qubits; this would typically be accomplished using controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress towards this goal by demonstrating entanglement among an ensemble of atoms confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. Here we use an optical lattice of double-well potentials to isolate and manipulate arrays of paired (87)Rb atoms, inducing controlled entangling interactions within each pair. Our experiment realizes proposals to use controlled exchange coupling in a system of neutral atoms. Although 87Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation demonstrates the essential component of a neutral atom quantum SWAP gate (which interchanges the state of two qubits). Its 'half-implementation', the root SWAP gate, is entangling, and together with single-qubit rotations it forms a set of universal gates for quantum computation.  相似文献   
394.
Guanine-nucleotide exchange factors on ADP-ribosylation factor GTPases (ARF-GEFs) regulate vesicle formation in time and space by activating ARF substrates on distinct donor membranes. Mammalian GBF1 (ref. 2) and yeast Gea1/2 (ref. 3) ARF-GEFs act at Golgi membranes, regulating COPI-coated vesicle formation. In contrast, their Arabidopsis thaliana homologue GNOM (GN) is required for endosomal recycling, playing an important part in development. This difference indicates an evolutionary divergence of trafficking pathways between animals and plants, and raised the question of how endoplasmic reticulum-Golgi transport is regulated in plants. Here we demonstrate that the closest homologue of GNOM in Arabidopsis, GNOM-LIKE1 (GNL1; NM_123312; At5g39500), performs this ancestral function. GNL1 localizes to and acts primarily at Golgi stacks, regulating COPI-coated vesicle formation. Surprisingly, GNOM can functionally substitute for GNL1, but not vice versa. Our results suggest that large ARF-GEFs of the GBF1 class perform a conserved role in endoplasmic reticulum-Golgi trafficking and secretion, which is done by GNL1 and GNOM in Arabidopsis, whereas GNOM has evolved to perform an additional plant-specific function of recycling from endosomes to the plasma membrane. Duplication and diversification of ARF-GEFs in plants contrasts with the evolution of entirely new classes of ARF-GEFs for endosomal trafficking in animals, which illustrates the independent evolution of complex endosomal pathways in the two kingdoms.  相似文献   
395.
396.
397.
Maccarone TJ  Kundu A  Zepf SE  Rhode KL 《Nature》2007,445(7124):183-185
Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.  相似文献   
398.
399.
Cell biology: chromosome territories   总被引:1,自引:0,他引:1  
Meaburn KJ  Misteli T 《Nature》2007,445(7126):379-781
  相似文献   
400.
Dery H  Dalal P  Cywiński Ł  Sham LJ 《Nature》2007,447(7144):573-576
Research in semiconductor spintronics aims to extend the scope of conventional electronics by using the spin degree of freedom of an electron in addition to its charge. Significant scientific advances in this area have been reported, such as the development of diluted ferromagnetic semiconductors, spin injection into semiconductors from ferromagnetic metals and discoveries of new physical phenomena involving electron spin. Yet no viable means of developing spintronics in semiconductors has been presented. Here we report a theoretical design that is a conceptual step forward-spin accumulation is used as the basis of a semiconductor computer circuit. Although the giant magnetoresistance effect in metals has already been commercially exploited, it does not extend to semiconductor/ferromagnet systems, because the effect is too weak for logic operations. We overcome this obstacle by using spin accumulation rather than spin flow. The basic element in our design is a logic gate that consists of a semiconductor structure with multiple magnetic contacts; this serves to perform fast and reprogrammable logic operations in a noisy, room-temperature environment. We then introduce a method to interconnect a large number of these gates to form a 'spin computer'. As the shrinking of conventional complementary metal-oxide-semiconductor (CMOS) transistors reaches its intrinsic limit, greater computational capability will mean an increase in both circuit area and power dissipation. Our spin-based approach may provide wide margins for further scaling and also greater computational capability per gate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号