首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43869篇
  免费   143篇
  国内免费   289篇
系统科学   532篇
丛书文集   1032篇
教育与普及   140篇
理论与方法论   243篇
现状及发展   17779篇
研究方法   1642篇
综合类   22112篇
自然研究   821篇
  2013年   438篇
  2012年   789篇
  2011年   1637篇
  2010年   502篇
  2009年   453篇
  2008年   949篇
  2007年   1031篇
  2006年   1075篇
  2005年   1010篇
  2004年   810篇
  2003年   762篇
  2002年   773篇
  2001年   1242篇
  2000年   1206篇
  1999年   821篇
  1992年   732篇
  1991年   605篇
  1990年   626篇
  1989年   610篇
  1988年   613篇
  1987年   614篇
  1986年   589篇
  1985年   723篇
  1984年   618篇
  1983年   501篇
  1982年   455篇
  1981年   443篇
  1980年   569篇
  1979年   1232篇
  1978年   1055篇
  1977年   1069篇
  1976年   755篇
  1975年   855篇
  1974年   1218篇
  1973年   1058篇
  1972年   1058篇
  1971年   1307篇
  1970年   1640篇
  1969年   1289篇
  1968年   1227篇
  1967年   1295篇
  1966年   1106篇
  1965年   819篇
  1959年   486篇
  1958年   708篇
  1957年   567篇
  1956年   475篇
  1955年   440篇
  1954年   468篇
  1948年   246篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Phytanic acid is a branched-chain fatty acid that accumulates in a variety of metabolic disorders. High levels of phytanic acid found in patients can exceed the millimolar range and lead to severe symptoms. Degradation of phytanic acid takes place by α-oxidation inside the peroxisome. A deficiency of its breakdown, leading to elevated levels, can result from either a general peroxisomal dysfunction or from a defect in one of the enzymes involved in α-oxidation. Research on Refsum disease, belonging to the latter group of disorders and characterized by a deficiency of the first enzyme of α-oxidation, has extended our knowledge of phytanic acid metabolism and pathology of the disease greatly over the past few decades. This review will centre on this research on phytanic acid: its origin, the mechanism by which its α-oxidation takes place, its role in human disease and the way it is produced from phytol. Received 4 October 2005; received after revision 24 February 2006; accepted 26 April 2006  相似文献   
992.
Isoprenoids are synthesized in all living organisms and are incorporated into diverse classes of end-products that participate in a multitude of cellular processes relating to cell growth, differentiation, cytoskeletal function and vesicle trafficking. In humans, the non-sterol isoprenoids, farnesyl pyrophosphate and geranylgeranyl-pyrophosphate, are synthesized via the mevalonate pathway and are covalently added to members of the small G protein superfamily. Isoprenylated proteins have key roles in membrane attachment and protein functionality, have been shown to have a central role in some cancers and are likely also to be involved in the pathogenesis and progression of atherosclerosis and Alzheimer disease. This review details current knowledge on the biosynthesis of isoprenoids, their incorporation into proteins by the process known as prenylation and the complex regulatory network that controls these proteins. An improved understanding of these processe is likely to lead to the development of novel therapies that will have important implications for human health and disease. Received 5 July 2005; received after revision 17 October 2005; accepted 22 October 2005  相似文献   
993.
Brucella has traditionally been considered a biological weapon. It was the subject of extensive offensive research in the past, and still belongs to category B pathogens on most lists. Its propensity for airborne transmission and induction of chronic debilitating disease requiring combined antibiotic regimens for treatment, its abundance around the world and its vague clinical characteristics defying rapid clinical diagnosis are some of the characteristics that apply to the pathogen's weapons potential. Yet minimal mortality, availability of treatment options, protracted inoculation period and the emergence of new, more virulent potential weapons means that its inclusion among agents of bioterrorism is nowadays mainly of historical significance. Nevertheless, in the interest of literacy and of avoiding panic, physicians and the public both should be aware of the most common zoonosis worldwide.  相似文献   
994.
995.
996.
Sung LY  Gao S  Shen H  Yu H  Song Y  Smith SL  Chang CC  Inoue K  Kuo L  Lian J  Li A  Tian XC  Tuck DP  Weissman SM  Yang X  Cheng T 《Nature genetics》2006,38(11):1323-1328
Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.  相似文献   
997.
998.
Nadeau JH  Topol EJ 《Nature genetics》2006,38(10):1095-1098
Recent experience with several high-profile drugs demonstrates the great challenges in developing effective and safe therapeutics. A complementary approach to the popular paradigm of disease genetics is based on inherited factors that reduce the incidence and severity of disease among individuals who are genetically predisposed to disease. We propose testing specifically for modifier genes and protective alleles among at-risk individuals and studying the efficacy of therapeutics based on the genetics of health.  相似文献   
999.
Age-related macular degeneration (AMD) is a common, late-onset disease with seemingly typical complexity: recurrence ratios for siblings of an affected individual are three- to sixfold higher than in the general population, and family-based analysis has resulted in only modestly significant evidence for linkage. In a case-control study drawn from a US-based population of European descent, we have identified a previously unrecognized common, noncoding variant in CFH, the gene encoding complement factor H, that substantially increases the influence of this locus on AMD, and we have strongly replicated the associations of four other previously reported common alleles in three genes (P values ranging from 10(-6) to 10(-70)). Despite excellent power to detect epistasis, we observed purely additive accumulation of risk from alleles at these genes. We found no differences in association of these loci with major phenotypic categories of advanced AMD. Genotypes at these five common SNPs define a broad spectrum of interindividual disease risk and explain about half of the classical sibling risk of AMD in our study population.  相似文献   
1000.
The epidermis is a highly organized structure, the integrity of which is central to the protection of an organism. Development and subsequent maintenance of this tissue depends critically on the intricate balance between proliferation and differentiation of a resident stem cell population; however, the signals controlling the proliferation-differentiation switch in vivo remain elusive. Here, we show that mice carrying a homozygous missense mutation in interferon regulatory factor 6 (Irf6), the homolog of the gene mutated in the human congenital disorders Van der Woude syndrome and popliteal pterygium syndrome, have a hyperproliferative epidermis that fails to undergo terminal differentiation, resulting in soft tissue fusions. We further demonstrate that mice that are compound heterozygotes for mutations in Irf6 and the gene encoding the cell cycle regulator protein stratifin (Sfn; also known as 14-3-3sigma) show similar defects of keratinizing epithelia. Our results indicate that Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch and that Irf6 and Sfn interact genetically in this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号