首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14492篇
  免费   42篇
  国内免费   54篇
系统科学   41篇
丛书文集   66篇
教育与普及   34篇
理论与方法论   26篇
现状及发展   5933篇
研究方法   706篇
综合类   7588篇
自然研究   194篇
  2013年   77篇
  2012年   224篇
  2011年   411篇
  2010年   80篇
  2008年   232篇
  2007年   296篇
  2006年   275篇
  2005年   292篇
  2004年   308篇
  2003年   259篇
  2002年   277篇
  2001年   565篇
  2000年   543篇
  1999年   383篇
  1994年   288篇
  1992年   343篇
  1991年   262篇
  1990年   298篇
  1989年   244篇
  1988年   242篇
  1987年   262篇
  1986年   244篇
  1985年   338篇
  1984年   272篇
  1983年   227篇
  1982年   185篇
  1981年   188篇
  1980年   207篇
  1979年   481篇
  1978年   383篇
  1977年   318篇
  1976年   292篇
  1975年   301篇
  1974年   337篇
  1973年   287篇
  1972年   315篇
  1971年   385篇
  1970年   483篇
  1969年   355篇
  1968年   361篇
  1967年   308篇
  1966年   347篇
  1965年   243篇
  1959年   113篇
  1958年   186篇
  1957年   124篇
  1956年   93篇
  1955年   84篇
  1954年   105篇
  1948年   83篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
971.
Poskanzer KE  Marek KW  Sweeney ST  Davis GW 《Nature》2003,426(6966):559-563
Neurotransmission requires a balance of synaptic vesicle exocytosis and endocytosis. Synaptotagmin I (Syt I) is widely regarded as the primary calcium sensor for synaptic vesicle exocytosis. Previous biochemical data suggest that Syt I may also function during synaptic vesicle endocytosis; however, ultrastructural analyses at synapses with impaired Syt I function have provided an indirect and conflicting view of the role of Syt I during synaptic vesicle endocytosis. Until now it has not been possible experimentally to separate the exocytic and endocytic functions of Syt I in vivo. Here, we test directly the role of Syt I during endocytosis in vivo. We use quantitative live imaging of a pH-sensitive green fluorescent protein fused to a synaptic vesicle protein (synapto-pHluorin) to measure the kinetics of endocytosis in sytI-null Drosophila. We then combine live imaging of the synapto-pHluorins with photoinactivation of Syt I, through fluorescein-assisted light inactivation, after normal Syt I-mediated vesicle exocytosis. By inactivating Syt I only during endocytosis, we demonstrate that Syt I is necessary for the endocytosis of synaptic vesicles that have undergone exocytosis using a functional Syt I protein.  相似文献   
972.
973.
Vocadlo L  Alfè D  Gillan MJ  Wood IG  Brodholt JP  Price GD 《Nature》2003,424(6948):536-539
The nature of the stable phase of iron in the Earth's solid inner core is still highly controversial. Laboratory experiments suggest the possibility of an uncharacterized phase transformation in iron at core conditions and seismological observations have indicated the possible presence of complex, inner-core layering. Theoretical studies currently suggest that the hexagonal close packed (h.c.p.) phase of iron is stable at core pressures and that the body centred cubic (b.c.c.) phase of iron becomes elastically unstable at high pressure. In other h.c.p. metals, however, a high-pressure b.c.c. form has been found to become stabilized at high temperature. We report here a quantum mechanical study of b.c.c.-iron able to model its behaviour at core temperatures as well as pressures, using ab initio molecular dynamics free-energy calculations. We find that b.c.c.-iron indeed becomes entropically stabilized at core temperatures, but in its pure state h.c.p.-iron still remains thermodynamically more favourable. The inner core, however, is not pure iron, and our calculations indicate that the b.c.c. phase will be stabilized with respect to the h.c.p. phase by sulphur or silicon impurities in the core. Consequently, a b.c.c.-structured alloy may be a strong candidate for explaining the observed seismic complexity of the inner core.  相似文献   
974.
Schaak RE  Klimczuk T  Foo ML  Cava RJ 《Nature》2003,424(6948):527-529
The microscopic origin of superconductivity in the high-transition-temperature (high-T(c)) copper oxides remains the subject of active inquiry; several of their electronic characteristics are well established as universal to all the known materials, forming the experimental foundation that all theories must address. The most fundamental of those characteristics, for both the copper oxides and other superconductors, is the dependence of the superconducting T(c) on the degree of electronic band filling. The recent report of superconductivity near 4 K in the layered sodium cobalt oxyhydrate, Na(0.35)CoO2*1.3H2O, is of interest owing to both its triangular cobalt-oxygen lattice and its generally analogous chemical and structural relationships to the copper oxide superconductors. Here we show that the superconducting T(c) of this compound displays the same kind of behaviour on chemical doping that is observed in the high-T(c) copper oxides. Specifically, the optimal superconducting T(c) occurs in a narrow range of sodium concentrations (and therefore electron concentrations) and decreases for both underdoped and overdoped materials, as observed in the phase diagram of the copper oxide superconductors. The analogy is not perfect, however, suggesting that Na(x)CoO2*1.3H2O, with its triangular lattice geometry and special magnetic characteristics, may provide insights into systems where coupled charge and spin dynamics play an essential role in leading to superconductivity.  相似文献   
975.
Artemisinins target the SERCA of Plasmodium falciparum   总被引:1,自引:0,他引:1  
Artemisinins are extracted from sweet wormwood (Artemisia annua) and are the most potent antimalarials available, rapidly killing all asexual stages of Plasmodium falciparum. Artemisinins are sesquiterpene lactones widely used to treat multidrug-resistant malaria, a disease that annually claims 1 million lives. Despite extensive clinical and laboratory experience their molecular target is not yet identified. Activated artemisinins form adducts with a variety of biological macromolecules, including haem, translationally controlled tumour protein (TCTP) and other higher-molecular-weight proteins. Here we show that artemisinins, but not quinine or chloroquine, inhibit the SERCA orthologue (PfATP6) of Plasmodium falciparum in Xenopus oocytes with similar potency to thapsigargin (another sesquiterpene lactone and highly specific SERCA inhibitor). As predicted, thapsigargin also antagonizes the parasiticidal activity of artemisinin. Desoxyartemisinin lacks an endoperoxide bridge and is ineffective both as an inhibitor of PfATP6 and as an antimalarial. Chelation of iron by desferrioxamine abrogates the antiparasitic activity of artemisinins and correspondingly attenuates inhibition of PfATP6. Imaging of parasites with BODIPY-thapsigargin labels the cytosolic compartment and is competed by artemisinin. Fluorescent artemisinin labels parasites similarly and irreversibly in an Fe2+-dependent manner. These data provide compelling evidence that artemisinins act by inhibiting PfATP6 outside the food vacuole after activation by iron.  相似文献   
976.
Shelby JP  Lim DS  Kuo JS  Chiu DT 《Nature》2003,425(6953):38
Microfluidic systems can conveniently be used for rapid analysis of biological samples. Here we describe a single re-circulating flow, or microvortex, that can generate a maximum fluid rotational velocity of up to 12 m s(-1) and a corresponding radial acceleration in excess of 10(6)g. Such microvortices may be exploited in centrifugal microdevices to investigate the effects of high radial acceleration on biological and chemical processes.  相似文献   
977.
Su HT  Hsu RR  Chen AB  Wang YC  Hsiao WS  Lai WC  Lee LC  Sato M  Fukunishi H 《Nature》2003,423(6943):974-976
Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.  相似文献   
978.
Fennimore AM  Yuzvinsky TD  Han WQ  Fuhrer MS  Cumings J  Zettl A 《Nature》2003,424(6947):408-410
Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic devices are now emerging that set the stage for future integrated nanoelectronics. Recently, there have been dramatic parallel advances in the miniaturization of mechanical and electromechanical devices. Commercial microelectromechanical systems now reach the submillimetre to micrometre size scale, and there is intense interest in the creation of next-generation synthetic nanometre-scale electromechanical systems. We report on the construction and successful operation of a fully synthetic nanoscale electromechanical actuator incorporating a rotatable metal plate, with a multi-walled carbon nanotube serving as the key motion-enabling element.  相似文献   
979.
Jasmin L  Rabkin SD  Granato A  Boudah A  Ohara PT 《Nature》2003,424(6946):316-320
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.  相似文献   
980.
Zhang LI  Tan AY  Schreiner CE  Merzenich MM 《Nature》2003,424(6945):201-205
The direction of frequency-modulated (FM) sweeps is an important temporal cue in animal and human communication. FM direction-selective neurons are found in the primary auditory cortex (A1), but their topography and the mechanisms underlying their selectivity remain largely unknown. Here we report that in the rat A1, direction selectivity is topographically ordered in parallel with characteristic frequency (CF): low CF neurons preferred upward sweeps, whereas high CF neurons preferred downward sweeps. The asymmetry of 'inhibitory sidebands', suppressive regions flanking the tonal receptive field (TRF) of the spike response, also co-varied with CF. In vivo whole-cell recordings showed that the direction selectivity already present in the synaptic inputs was enhanced by cortical synaptic inhibition, which suppressed the synaptic excitation of the non-preferred direction more than that of the preferred. The excitatory and inhibitory synaptic TRFs had identical spectral tuning, but with inhibition delayed relative to excitation. The spectral asymmetry of the synaptic TRFs co-varied with CF, as had direction selectivity and sideband asymmetry, and thus suggested a synaptic mechanism for the shaping of FM direction selectivity and its topographic ordering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号