首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7808篇
  免费   36篇
  国内免费   24篇
系统科学   57篇
丛书文集   18篇
教育与普及   4篇
理论与方法论   57篇
现状及发展   3864篇
研究方法   461篇
综合类   3320篇
自然研究   87篇
  2018年   57篇
  2017年   55篇
  2016年   62篇
  2014年   50篇
  2013年   90篇
  2012年   200篇
  2011年   275篇
  2010年   87篇
  2008年   180篇
  2007年   192篇
  2006年   194篇
  2005年   197篇
  2004年   208篇
  2003年   156篇
  2002年   160篇
  2001年   224篇
  2000年   179篇
  1999年   148篇
  1992年   132篇
  1991年   90篇
  1990年   101篇
  1989年   80篇
  1988年   82篇
  1987年   108篇
  1986年   74篇
  1985年   123篇
  1984年   115篇
  1983年   89篇
  1982年   86篇
  1981年   72篇
  1980年   96篇
  1979年   249篇
  1978年   205篇
  1977年   196篇
  1976年   135篇
  1975年   157篇
  1974年   240篇
  1973年   199篇
  1972年   218篇
  1971年   220篇
  1970年   284篇
  1969年   237篇
  1968年   212篇
  1967年   212篇
  1966年   212篇
  1965年   160篇
  1964年   57篇
  1958年   76篇
  1957年   52篇
  1954年   52篇
排序方式: 共有7868条查询结果,搜索用时 15 毫秒
231.
As the most famous woman scientist of the twentieth century, there has been no shortage of books and articles on the life and career of Marie Curie (1867–1934). Her role as a director of a laboratory-based research school in the new scientific field of radioactivity, a field which embraced both chemistry and physics, however, has never been examined. In recent years, there has been a growing interest in the question of research schools, and Morrell, Ravetz, Geison, and Klosterman, amongst others, have written on this subject. Using, in part, the methodology of Morrell, this paper investigates the role of Marie Curie as a school director in the Paris Faculty in the years 1907–14, examining the work and characteristics of her school and assessing her effectiveness as a director.  相似文献   
232.
Les observatoires occidentaux se transforment en véritable usine scientifique à partir du milieu du 19e siècle. L'astrométrie symbolise ce passage à une économie industrieuse des pratiques scientifiques. Le chronographe imprimant, qui permet de réduire les équations personnelles des observateurs, s'impose, d'abord aux Etats-Unis, puis en Angleterre, en instrument-emblème de cette transformation profonde. En France, les initiatives de l'astronome Liais restent prototypiques. Ce n'est qu'au début du 20e siècle, par les voies détournées de l'observatoire d'Hendaye et de l'abbé Verschaffel, que le chronographe imprimant fait son retour et conquiert les espaces savants. La centralisation excessive de l'astronomie française, l'autoritarisme du directeur de l'Observatoire de Paris Urbain Le Verrier, et la faiblesse du marché des instruments expliquent pourquoi le chronographe imprimant n'a fait souche que très tardivement en France.  相似文献   
233.
234.
235.
The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrPC). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20–50, 100–200, and 300–400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrPC. STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrPC-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1–PrPC signaling.  相似文献   
236.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.  相似文献   
237.
Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.  相似文献   
238.
Links between cancer and stem cells have been proposed for many years. As the cancer stem cell (CSC) theory became widely studied, new methods were developed to culture and expand cancer cells with conserved determinants of “stemness”. These cells show increased ability to grow in suspension as spheres in serum-free medium supplemented with growth factors and chemicals. The physiological relevance of this phenomenon in established cancer cell lines remains unclear. Cell lines have traditionally been used to explore tumor biology and serve as preclinical models for the screening of potential therapeutic agents. Here, we grew cell-forming spheres (CFS) from 25 established colorectal cancer cell lines. The molecular and cellular characteristics of CFS were compared to the bulk of tumor cells. CFS could be isolated from 72 % of the cell lines. Both CFS and their parental CRC cell lines were highly tumorigenic. Compared to their parental cells, they showed similar expression of putative CSC markers. The ability of CRC cells to grow as CFS was greatly enhanced by prior treatment with 5-fluorouracil. At the molecular level, CFS and parental CRC cells showed identical gene mutations and very similar genomic profiles, although microarray analysis revealed changes in CFS gene expression that were independent of DNA copy-number. We identified a CFS gene expression signature common to CFS from all CRC cell lines, which was predictive of disease relapse in CRC patients. In conclusion, CFS models derived from CRC cell lines possess interesting phenotypic features that may have clinical relevance for drug resistance and disease relapse.  相似文献   
239.
Gap junction channels link cytoplasms of adjacent cells. Connexins, their constitutive proteins, are essential in cell homeostasis and are implicated in numerous physiological processes. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival, and apoptosis, in which a connexin isotype, connexin 43, plays a crucial role as evidenced by genomic approaches based on gene deletion. The balance between cell proliferation/differentiation/apoptosis is a prerequisite for maintaining levels of spermatozoa essential for fertility and for limiting anarchic cell proliferation, a major risk of testis tumor. The present review highlights the emerging role of connexins in testis pathogenesis, focusing specifically on two intimately interconnected human testicular diseases (azoospermia with impaired spermatogenesis and testicular germ cell tumors), whose incidence increased during the last decades. This work proposes connexin 43 as a potential cancer diagnostic and prognostic marker, as well as a promising therapeutic target for testicular diseases.  相似文献   
240.
Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号