首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4584篇
  免费   24篇
  国内免费   63篇
系统科学   28篇
丛书文集   83篇
教育与普及   65篇
理论与方法论   7篇
现状及发展   2026篇
研究方法   215篇
综合类   2231篇
自然研究   16篇
  2018年   41篇
  2017年   30篇
  2012年   67篇
  2011年   98篇
  2010年   41篇
  2009年   107篇
  2008年   96篇
  2007年   130篇
  2006年   85篇
  2005年   127篇
  2004年   136篇
  2003年   92篇
  2002年   97篇
  2001年   218篇
  2000年   193篇
  1999年   143篇
  1998年   32篇
  1997年   28篇
  1995年   30篇
  1992年   100篇
  1991年   92篇
  1990年   94篇
  1989年   71篇
  1988年   78篇
  1987年   80篇
  1986年   59篇
  1985年   98篇
  1984年   82篇
  1983年   63篇
  1982年   65篇
  1981年   60篇
  1980年   75篇
  1979年   148篇
  1978年   135篇
  1977年   109篇
  1976年   79篇
  1975年   73篇
  1974年   103篇
  1973年   105篇
  1972年   95篇
  1971年   117篇
  1970年   108篇
  1969年   99篇
  1968年   97篇
  1967年   94篇
  1966年   87篇
  1965年   59篇
  1958年   41篇
  1957年   32篇
  1956年   29篇
排序方式: 共有4671条查询结果,搜索用时 15 毫秒
81.
Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules.  相似文献   
82.
1 Results In order to overcome the inherent incompatibility of PC with graphite in the lithium ion battery system, improve their electrochemical performance at low temperature,phenyl tris-2-methoxydiethoxy silane (PTMS) has been studied as an additive to the PC-based electrolyte of lithium ion batteries with graphite anode. From the cyclic voltammogram for the graphite anode in the PC-based electrolyte,we find that in the case of the electrolyte without the additive,there is a large irreversible peak ne...  相似文献   
83.
1 Results Electroactive polymers (EAPs) driven by transducing electric energy into mechanical energy have been the subjects of recent interest[1].“Ionic liquids“,consisting entirely of cation and anion,have characteristic features such as negligible volatility,non-flammability,thermal and chemical stability,and high ionic conductivity.We proposed an EAP actuator utilizing ion-gels[2-3],which consist of ionic liquids and polymers,sandwiching with two carbon material sheets as shown in Fig.1.This electrol...  相似文献   
84.
1IntroductionPhase transition and critical phenomenon are extensively debatable subjects in the natural sciences.Re-cently,the same concept was introduced into the astronomical objects[1]as well as the microscopic systems,such as in atomic cluster[2]and n…  相似文献   
85.
The fraction of pyruvate dehydrogenase complex (PDC) in the active form is reduced by the activities of dedicated PD kinase isozymes (PDK1, PDK2, PDK3 and PDK4). Via binding to the inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase (E2 60mer), PDK rapidly access their E2-bound PD substrate. The E2-enhanced activity of the widely distributed PDK2 is limited by dissociation of ADP from its C-terminal catalytic domain, and this is further slowed by pyruvate binding to the N-terminal regulatory (R) domain. Via the reverse of the PDC reaction, NADH and acetyl-CoA reductively acetylate lipoyl group of L2, which binds to the R domain and stimulates PDK2 activity by speeding up ADP dissociation. Activation of PDC by synthetic PDK inhibitors binding at the pyruvate or lipoyl binding sites decreased damage during heart ischemia and lowered blood glucose in insulin-resistant animals. PDC activation also triggers apoptosis in cancer cells that selectively convert glucose to lactate. Received 25 August 2006; received after revision 20 November 2006; accepted 20 December 2006  相似文献   
86.
The microtubule-associated protein tau (encoded by MAPT) and several tau kinases have been implicated in neurodegeneration, but only MAPT has a proven role in disease. We identified mutations in the gene encoding tau tubulin kinase 2 (TTBK2) as the cause of spinocerebellar ataxia type 11. Affected brain tissue showed substantial cerebellar degeneration and tau deposition. These data suggest that TTBK2 is important in the tau cascade and in spinocerebellar degeneration.  相似文献   
87.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   
88.
Lactate oxidase is used in biosensors to measure the concentration of lactate in the blood and other body fluids. Increasing the thermostability of lactate oxidase can significantly prolong the lifetime of these biosensors. We have previously obtained a variant of lactate oxidase from Aerococcus viridans with two mutations (E160G/V198I) that is significantly more thermostable than the wild-type enzyme. Here we have attempted to further improve the thermostability of E160G/V198I lactate oxidase using directed evolution. We made a mutant lactate oxidase gene library by applying error-prone PCR and DNA shuffling, and screened for thermostable mutant lactate oxidase using a plate-based assay. After three rounds of screening we obtained a thermostable mutant lactate oxidase, which has six mutations (E160G/V198I/G36S/T103S/A232S/F277Y). The half-life of this lactate oxidase at 70 °C was about 2 times that of E160G/V198I and about 36 times that of the wild-type enzyme. The amino acid mutation process suggests that the combined neutral mutations are important in protein evolution. Received 15 September 2006; received after revision 21 October 2006; accepted 2 November 2006  相似文献   
89.
Genetic studies of diseases   总被引:1,自引:0,他引:1  
The biological system is a complex physicochemical system consisting of numerous dynamic networks of biochemical reactions and signaling interactions between cellular components. This complexity makes it virtually unanalyzable by traditional methods. Hence, biological networks have been developed as a platform for integrating information from high- to low-throughput experiments for analysis of biological systems. The network analysis approach is vital for successful quantitative modeling of biological systems. The numerous online pathway databases vary widely in coverage and representation of biological processes. An integrated network-based information system for querying, visualization and analysis promised successful integration of data on a large scale. Such integrated systems will greatly facilitate the understanding of biological interactions and experimental verification.  相似文献   
90.
I examine the information content of option‐implied covariance between jumps and diffusive risk in the cross‐sectional variation in future returns. This paper documents that the difference between realized volatility and implied covariance (RV‐ICov) can predict future returns. The results show a significant and negative association of expected return and realized volatility–implied covariance spread in both the portfolio level analysis and cross‐sectional regression study. A trading strategy of buying a portfolio with the lowest RV‐ICov quintile portfolio and selling with the highest one generates positive and significant returns. This RV‐Cov anomaly is robust to controlling for size, book‐to‐market value, liquidity and systematic risk proportion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号