首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16820篇
  免费   35篇
  国内免费   37篇
系统科学   71篇
丛书文集   263篇
教育与普及   30篇
理论与方法论   72篇
现状及发展   8002篇
研究方法   696篇
综合类   7597篇
自然研究   161篇
  2013年   76篇
  2012年   188篇
  2011年   365篇
  2008年   223篇
  2007年   241篇
  2006年   281篇
  2005年   270篇
  2004年   376篇
  2003年   257篇
  2002年   255篇
  2001年   479篇
  2000年   443篇
  1999年   325篇
  1994年   74篇
  1992年   286篇
  1991年   221篇
  1990年   238篇
  1989年   235篇
  1988年   202篇
  1987年   234篇
  1986年   278篇
  1985年   337篇
  1984年   230篇
  1983年   226篇
  1982年   205篇
  1981年   217篇
  1980年   224篇
  1979年   563篇
  1978年   475篇
  1977年   437篇
  1976年   341篇
  1975年   404篇
  1974年   565篇
  1973年   452篇
  1972年   472篇
  1971年   555篇
  1970年   696篇
  1969年   538篇
  1968年   539篇
  1967年   536篇
  1966年   430篇
  1965年   371篇
  1964年   121篇
  1959年   193篇
  1958年   330篇
  1957年   247篇
  1956年   190篇
  1955年   192篇
  1954年   190篇
  1948年   127篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
241.
Epigenetic asymmetry of imprinted genes in plant gametes   总被引:12,自引:0,他引:12  
Plant imprinted genes show parent-of-origin expression in seed endosperm, but little is known about the nature of parental imprints in gametes before fertilization. We show here that single differentially methylated regions (DMRs) correlate with allele-specific expression of two maternally expressed genes in the seed and that one DMR is differentially methylated between gametes. Thus, plants seem to have developed similar strategies as mammals to epigenetically mark imprinted genes.  相似文献   
242.
243.
The genetic basis of most conditions characterized by congenital contractures is largely unknown. Here we show that mutations in the embryonic myosin heavy chain (MYH3) gene cause Freeman-Sheldon syndrome (FSS), one of the most severe multiple congenital contracture (that is, arthrogryposis) syndromes, and nearly one-third of all cases of Sheldon-Hall syndrome (SHS), the most common distal arthrogryposis. FSS and SHS mutations affect different myosin residues, demonstrating that MYH3 genotype is predictive of phenotype. A structure-function analysis shows that nearly all of the MYH3 mutations are predicted to interfere with myosin's catalytic activity. These results add to the growing body of evidence showing that congenital contractures are a shared outcome of prenatal defects in myofiber force production. Elucidation of the genetic basis of these syndromes redefines congenital contractures as unique defects of the sarcomere and provides insights about what has heretofore been a poorly understood group of disorders.  相似文献   
244.
245.
New protein folds have emerged throughout evolution, but it remains unclear how a protein fold can evolve while maintaining its function, particularly when fold changes require several sequential gene rearrangements. Here, we explored hypothetical evolutionary pathways linking different topological families of the DNA-methyltransferase superfamily. These pathways entail successive gene rearrangements through a series of intermediates, all of which should be sufficiently active to maintain the organism's fitness. By means of directed evolution, and starting from HaeIII methyltransferase (M.HaeIII), we selected all the required intermediates along these paths (a duplicated fused gene and duplicates partially truncated at their 5' or 3' coding regions) that maintained function in vivo. These intermediates led to new functional genes that resembled natural methyltransferases from three known classes or that belonged to a new class first seen in our evolution experiments and subsequently identified in natural genomes. Our findings show that new protein topologies can evolve gradually through multistep gene rearrangements and provide new insights regarding these processes.  相似文献   
246.
247.
Structural and biological aspects of carotenoid cleavage   总被引:1,自引:0,他引:1  
Apo-carotenoid compounds such as retinol (vitamin A) are involved in a variety of cellular processes and are found in all kingdoms of life. Instead of being synthesized from small precursors, they are commonly produced by oxidative cleavage and subsequent modification of larger carotenoid compounds. The cleavage reaction is catalyzed by a family of related enzymes, which convert specific substrate double bonds to the corresponding aldehydes or ketones. The individual family members differ in their substrate preference and the position of the cleaved double bond, giving rise to a remarkable number of products starting from a limited number of carotenoid substrate molecules. The recent determination of the structure of a member of this family has provided insight into the reaction mechanism, showing how substrate specificity is achieved. This review will focus on the biochemistry of carotenoid oxygenases and the structural determinants of the cleavage reaction.  相似文献   
248.
This review discusses the state-of-the-art in molecular research on the most prominent and widely applied lantibiotic, i.e., nisin. The developments in understanding its complex biosynthesis and mode of action are highlighted. Moreover, novel applications arising from engineering either nisin itself, or from the construction of totally novel dehydrated and/or lanthionine-containing peptides with desired bioactivities are described. Several challenges still exist in understanding the immunity system and the unique multiple reactions occurring on a single substrate molecule, carried out by the dehydratase NisB and the cyclization enzyme NisC. The recent elucidation of the 3-D structure of NisC forms the exciting beginning of further 3-D-structure determinations of the other biosynthetic enzymes, transporters and immunity proteins. Advances in achieving in vitro activities of lanthionine-forming enzymes will greatly enhance our understanding of the molecular characteristics of the biosynthesis process, opening up new avenues for developing unique and novel biocatalytic processes. Received 9 April 2007; received after revision 31 August 2007; accepted 28 September 2007  相似文献   
249.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:2,自引:0,他引:2  
The Xenopus tadpole is a favourable organism for regeneration research because it is suitable for a wide range of micromanipulative procedures and for a wide range of transgenic methods. Combination of these techniques enables genes to be activated or inhibited at specific times and in specific tissue types to a much higher degree than in any other organism capable of regeneration. Regenerating systems include the tail, the limb buds and the lens. The study of tail regeneration has shown that each tissue type supplies the cells for its own replacement: there is no detectable de-differentiation or metaplasia. Signalling systems needed for regeneration include the BMP and Notch signalling pathways, and perhaps also the Wnt and FGF pathways. The limb buds will regenerate completely at early stages, but not once they are fully differentiated. This provides a good opportunity to study the loss of regenerative ability using transgenic methods.  相似文献   
250.
Inhibition of gastric acid secretion is the mainstay of the treatment of gastroesophageal reflux disease and peptic ulceration; therapies to inhibit acid are among the best-selling drugs worldwide. Highly effective agents targeting the histamine H2 receptor were first identified in the 1970s. These were followed by the development of irreversible inhibitors of the parietal cell hydrogen-potassium ATPase (the proton pump inhibitors) that inhibit acid secretion much more effectively. Reviewed here are the chemistry, biological targets and pharmacology of these drugs, with reference to their current and evolving clinical utilities. Future directions in the development of acid inhibitory drugs include modifications of current agents and the emergence of a novel class of agents, the acid pump antagonists. Received 30 May 2007; received after revision 15 August 2007; accepted 13 September 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号