首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55562篇
  免费   255篇
  国内免费   544篇
系统科学   1229篇
丛书文集   335篇
教育与普及   285篇
理论与方法论   535篇
现状及发展   32413篇
研究方法   694篇
综合类   18679篇
自然研究   2191篇
  2013年   802篇
  2012年   539篇
  2011年   2577篇
  2009年   611篇
  2008年   753篇
  2007年   818篇
  2006年   956篇
  2005年   1096篇
  2004年   2340篇
  2003年   1859篇
  2002年   1533篇
  2001年   1336篇
  2000年   842篇
  1999年   934篇
  1998年   643篇
  1997年   774篇
  1996年   531篇
  1994年   687篇
  1993年   690篇
  1992年   876篇
  1991年   741篇
  1990年   828篇
  1989年   642篇
  1988年   594篇
  1987年   632篇
  1986年   730篇
  1985年   875篇
  1984年   743篇
  1983年   651篇
  1982年   797篇
  1981年   840篇
  1980年   904篇
  1979年   1411篇
  1978年   1302篇
  1977年   1264篇
  1976年   1122篇
  1975年   1109篇
  1974年   1029篇
  1973年   1228篇
  1972年   1293篇
  1971年   1334篇
  1970年   1445篇
  1969年   1300篇
  1968年   1255篇
  1967年   1127篇
  1966年   929篇
  1965年   779篇
  1964年   499篇
  1958年   605篇
  1957年   516篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
The peptide hormone relaxin is emerging as a multi-functional factor in a broad range of target tissues including several non-reproductive organs, in addition to its historical role as a hormone of pregnancy. This review discusses the evidence that collectively demonstrates the many diverse and vital roles of relaxin: the homeostatic role of endogenous relaxin in mammalian pregnancy and ageing; its gender-related effects; the therapeutic effects of relaxin in the treatment of fibrosis, inflammation, cardioprotection, vasodilation and wound healing (angiogenesis) amongst other pathophysiological conditions, and its potential mechanism of action. Furthermore, translational issues using experimental models (to humans) and its use in various clinical trials, are described, each with important lessons for the design of future trials involving relaxin. The diverse physiological and pathological roles for relaxin have led to the search for its significance in humans and highlight its potential as a drug of the future. Received 12 December 2006; received after revision 12 February 2007; accepted 15 March 2007  相似文献   
912.
913.
tRNase Z: the end is not in sight   总被引:1,自引:0,他引:1  
Although the enzyme tRNase Z has only recently been isolated, a plethora of data has already been acquired concerning the enzyme. tRNase Z is the endonuclease that catalyzes the removal of the tRNA 3′ trailer, yielding the mature tRNA 3′ end ready for CCA addition and aminoacylation. Another substrate cleaved by tRNase Z is the small chromogenic phosphodiester bis(p-nitrophenyl)phosphate (bpNPP), which is the smallest tRNase Z substrate known so far. Hitherto the biological function as tRNA 3′-end processing enzyme has been shown only in one prokaryotic and one eukaryotic organism, respectively. This review summarizes the present information concerning the two tRNase Z substrates pre-tRNA and bpNPP, as well as the metal requirements of tRNase Z enzymes. Received 29 March 2007; received after revision 15 May 2007; accepted 21 May 2007  相似文献   
914.
The RecQ family of DNA helicases is highly conserved throughout evolution and plays an important role in the maintenance of genomic stability in all organisms. Mutations in three of the five known family members in humans, BLM, WRN and RECQL4, give rise to disorders that are characterized by predisposition to cancer and premature aging, emphasizing the importance of studying the RecQ proteins and their cellular activities. Interestingly, three autosomal recessive disorders have been associated with mutations in the RECQL4 gene: Rothmund-Thomson, RAPADILINO, and Baller-Gerold syndromes, thus making RECQL4 unique within the RecQ family of DNA helicases. To date, however, the molecular function of RECQL4 and the possible cellular pathways in which it is involved remain poorly understood. Here, we present an overview of recent findings in connection with RECQL4 and try to highlight different directions the field could head, helping to clarify the role of RECQL4 in preventing tumorigenesis and maintenance of genome integrity in humans. Received 31 October 2006; received after revision 4 January 2007; accepted 5 February 2007  相似文献   
915.
Beyond their role in replication and chromosome end capping, telomeres are also thought to function in meiotic chromosome pairing, meiotic and mitotic chromosome segregation as well as in nuclear organization. Observations in both somatic and meiotic cells suggest that the positioning of telomeres within the nucleus is highly specific and believed to be dependent mainly on telomere interactions with the nuclear envelope either directly or through chromatin interacting proteins. Although little is known about the mechanism of telomere clustering, some studies show that it is an active process. Recent data have suggested a regulatory role for telomere chromatin structure in telomere movement. This review will summarize recent studies on telomere interactions with the nuclear matrix, telomere chromatin structure and factors that modify telomere chromatin structure as related to regulation of telomere movement.  相似文献   
916.
Computational protein function prediction: Are we making progress?   总被引:1,自引:0,他引:1  
The computational prediction of gene and protein function is rapidly gaining ground as a central undertaking in computational biology. Making sense of the flood of genomic data requires fast and reliable annotation. Many ingenious algorithms have been devised to infer a protein's function from its amino acid sequence, 3D structure and chromosomal location of the encoding genes. However, there are significant challenges in assessing how well these programs perform. In this article we explore those challenges and review our own attempt at assessing the performance of those programs. We conclude that the task is far from complete and that a critical assessment of the performance of function prediction programs is necessary to make true progress in computational function prediction.  相似文献   
917.
Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner's syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner's syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed.  相似文献   
918.
Ras GTPases mediate a wide variety of cellular processes by converting a multitude of extracellular stimuli into specific biological responses including proliferation, differentiation and survival. In mammalian cells, three ras genes encode four Ras isoforms (H-Ras, K-Ras4A, K-Ras4B and N-Ras) that are highly homologous but functionally distinct. Differences between the isoforms, including their post-translational modifications and intracellular sorting, mean that Ras has emerged as an important model system of compartmentalised signalling and membrane biology. Ras isoforms in different subcellular locations are proposed to recruit distinct upstream and downstream accessory proteins and activate multiple signalling pathways. Here, we summarise data relating to isoform-specific signalling, its role in disease and the mechanisms promoting compartmentalised signalling. Further understanding of this field will reveal the role of Ras signalling in development, cellular homeostasis and cancer and may suggest new therapeutic approaches.  相似文献   
919.
Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate   总被引:3,自引:0,他引:3  
Numerous microRNAs (miRNAs) have been discovered in the genomes of higher eukaryotes, and functional studies indicate that they are important during development. However, little is known concerning the function of individual miRNAs. We approached this problem in zebrafish by combining identification of miRNA expression, functional analyses and experimental validation of potential targets. We show that miR-214 is expressed during early segmentation stages in somites and that varying its expression alters the expression of genes regulated by Hedgehog signaling. Inhibition of miR-214 results in a reduction or loss of slow-muscle cell types. We show that su(fu) mRNA, encoding a negative regulator of Hedgehog signaling, is targeted by miR-214. Through regulation of su(fu), miR-214 enables precise specification of muscle cell types by sharpening cellular responses to Hedgehog.  相似文献   
920.
Germline gain-of-function mutations in SOS1 cause Noonan syndrome   总被引:1,自引:0,他引:1  
Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号