首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16782篇
  免费   34篇
  国内免费   37篇
系统科学   71篇
丛书文集   263篇
教育与普及   30篇
理论与方法论   71篇
现状及发展   7992篇
研究方法   693篇
综合类   7572篇
自然研究   161篇
  2013年   76篇
  2012年   185篇
  2011年   364篇
  2008年   222篇
  2007年   241篇
  2006年   280篇
  2005年   270篇
  2004年   379篇
  2003年   254篇
  2002年   254篇
  2001年   479篇
  2000年   442篇
  1999年   326篇
  1994年   74篇
  1992年   286篇
  1991年   221篇
  1990年   238篇
  1989年   235篇
  1988年   202篇
  1987年   234篇
  1986年   278篇
  1985年   335篇
  1984年   230篇
  1983年   226篇
  1982年   205篇
  1981年   217篇
  1980年   224篇
  1979年   563篇
  1978年   476篇
  1977年   437篇
  1976年   341篇
  1975年   404篇
  1974年   564篇
  1973年   453篇
  1972年   472篇
  1971年   553篇
  1970年   696篇
  1969年   538篇
  1968年   540篇
  1967年   536篇
  1966年   430篇
  1965年   371篇
  1964年   121篇
  1959年   193篇
  1958年   330篇
  1957年   247篇
  1956年   190篇
  1955年   192篇
  1954年   190篇
  1948年   127篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
891.
Three-dimensional X-ray structural microscopy with submicrometre resolution   总被引:4,自引:0,他引:4  
Larson BC  Yang W  Ice GE  Budai JD  Tischler JZ 《Nature》2002,415(6874):887-890
Advanced materials and processing techniques are based largely on the generation and control of non-homogeneous microstructures, such as precipitates and grain boundaries. X-ray tomography can provide three-dimensional density and chemical distributions of such structures with submicrometre resolution; structural methods exist that give submicrometre resolution in two dimensions; and techniques are available for obtaining grain-centroid positions and grain-average strains in three dimensions. But non-destructive point-to-point three-dimensional structural probes have not hitherto been available for investigations at the critical mesoscopic length scales (tenths to hundreds of micrometres). As a result, investigations of three-dimensional mesoscale phenomena--such as grain growth, deformation, crumpling and strain-gradient effects--rely increasingly on computation and modelling without direct experimental input. Here we describe a three-dimensional X-ray microscopy technique that uses polychromatic synchrotron X-ray microbeams to probe local crystal structure, orientation and strain tensors with submicrometre spatial resolution. We demonstrate the utility of this approach with micrometre-resolution three-dimensional measurements of grain orientations and sizes in polycrystalline aluminium, and with micrometre depth-resolved measurements of elastic strain tensors in cylindrically bent silicon. This technique is applicable to single-crystal, polycrystalline, composite and functionally graded materials.  相似文献   
892.
Pennartz CM  de Jeu MT  Bos NP  Schaap J  Geurtsen AM 《Nature》2002,416(6878):286-290
The central biological clock of the mammalian brain is located in the suprachiasmatic nucleus. This hypothalamic region contains neurons that generate a circadian rhythm on a single-cell basis. Clock cells transmit their circadian timing signals to other brain areas by diurnal modulation of their spontaneous firing rate. The intracellular mechanism underlying rhythm generation is thought to consist of one or more self-regulating molecular loops, but it is unknown how these loops interact with the plasma membrane to modulate the ionic conductances that regulate firing behaviour. Here we demonstrate a diurnal modulation of Ca2+ current in suprachiasmatic neurons. This current strongly contributes to the generation of spontaneous oscillations in membrane potential, which occur selectively during daytime and are tightly coupled to spike generation. Thus, day-night modulation of Ca2+ current is a central step in transducing the intracellular cycling of molecular clocks to the rhythm in spontaneous firing rate.  相似文献   
893.
Limited single-spacecraft observations of Jupiter's magnetopause have been used to infer that the boundary moves inward or outward in response to variations in the dynamic pressure of the solar wind. At Earth, multiple-spacecraft observations have been implemented to understand the physics of how this motion occurs, because they can provide a snapshot of a transient event in progress. Here we present a set of nearly simultaneous two-point measurements of the jovian magnetopause at a time when the jovian magnetopause was in a state of transition from a relatively larger to a relatively smaller size in response to an increase in solar-wind pressure. The response of Jupiter's magnetopause is very similar to that of the Earth, confirming that the understanding built on studies of the Earth's magnetosphere is valid. The data also reveal evidence for a well-developed boundary layer just inside the magnetopause.  相似文献   
894.
Io leaves a magnetic footprint on Jupiter's upper atmosphere that appears as a spot of ultraviolet emission that remains fixed underneath Io as Jupiter rotates. The specific physical mechanisms responsible for generating those emissions are not well understood, but in general the spot seems to arise because of an electromagnetic interaction between Jupiter's magnetic field and the plasma surrounding Io, driving currents of around 1 million amperes down through Jupiter's ionosphere. The other galilean satellites may also leave footprints, and the presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter. Here we report persistent, faint, far-ultraviolet emission from the jovian footprints of Ganymede and Europa. We also show that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically; the emission persists for several hours downstream. We infer from these data that Ganymede and Europa have persistent interactions with Jupiter's magnetic field despite their thin atmospheres.  相似文献   
895.
Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes   总被引:3,自引:0,他引:3  
Lee J  Kim H  Kahng SJ  Kim G  Son YW  Ihm J  Kato H  Wang ZW  Okazaki T  Shinohara H  Kuk Y 《Nature》2002,415(6875):1005-1008
Motivated by the technical and economic difficulties in further miniaturizing silicon-based transistors with the present fabrication technologies, there is a strong effort to develop alternative electronic devices, based, for example, on single molecules. Recently, carbon nanotubes have been successfully used for nanometre-sized devices such as diodes, transistors, and random access memory cells. Such nanotube devices are usually very long compared to silicon-based transistors. Here we report a method for dividing a semiconductor nanotube into multiple quantum dots with lengths of about 10nm by inserting Gd@C82 endohedral fullerenes. The spatial modulation of the nanotube electronic bandgap is observed with a low-temperature scanning tunnelling microscope. We find that a bandgap of approximately 0.5eV is narrowed down to approximately 0.1eV at sites where endohedral metallofullerenes are inserted. This change in bandgap can be explained by local elastic strain and charge transfer at metallofullerene sites. This technique for fabricating an array of quantum dots could be used for nano-electronics and nano-optoelectronics.  相似文献   
896.
All physical implementations of quantum bits (or qubits, the logical elements in a putative quantum computer) must overcome conflicting requirements: the qubits should be manipulable through external signals, while remaining isolated from their environment. Proposals based on quantum optics emphasize optimal isolation, while those following the solid-state route exploit the variability and scalability of nanoscale fabrication techniques. Recently, various designs using superconducting structures have been successfully tested for quantum coherent operation, however, the ultimate goal of reaching coherent evolution over thousands of elementary operations remains a formidable task. Protecting qubits from decoherence by exploiting topological stability is a qualitatively new proposal that holds promise for long decoherence times, but its physical implementation has remained unclear. Here we show how strongly correlated systems developing an isolated twofold degenerate quantum dimer liquid ground state can be used in the construction of topologically stable qubits; we discuss their implementation using Josephson junction arrays. Although the complexity of their architecture challenges the technology base available today, such topological qubits greatly benefit from their built-in fault-tolerance.  相似文献   
897.
Genetic cost of reproductive assurance in a self-fertilizing plant   总被引:16,自引:0,他引:16  
Herlihy CR  Eckert CG 《Nature》2002,416(6878):320-323
The transition from outcrossing to self-fertilization is one of the most common evolutionary trends in plants. Reproductive assurance, where self-fertilization ensures seed production when pollinators and/or potential mates are scarce, is the most long-standing and most widely accepted explanation for the evolution of selfing, but there have been few experimental tests of this hypothesis. Moreover, many apparently adaptive floral mechanisms that ensure the autonomous production of selfed seed might use ovules that would have otherwise been outcrossed. This seed discounting is costly if selfed offspring are less viable than their outcrossed counterparts, as often happens. The fertility benefit of reproductive assurance has never been examined in the light of seed discounting. Here we combine experimental measures of reproductive assurance with marker-gene estimates of self-fertilization, seed discounting and inbreeding depression to show that, during 2 years in 10 Ontario populations of Aquilegia canadensis (Ranunculaceae), reproductive assurance through self-fertilization increases seed production, but this benefit is greatly outweighed by severe seed discounting and inbreeding depression.  相似文献   
898.
Microfabrication technology: organized assembly of carbon nanotubes   总被引:4,自引:0,他引:4  
Wei BQ  Vajtai R  Jung Y  Ward J  Zhang R  Ramanath G  Ajayan PM 《Nature》2002,416(6880):495-496
Nanoscale structures need to be arranged into well-defined configurations in order to build integrated systems. Here we use a chemical-vapour deposition method with gas-phase catalyst delivery to direct the assembly of carbon nanotubes in a variety of predetermined orientations onto silicon/silica substrates, building them into one-, two- and three-dimensional arrangements. The preference of nanotubes to grow selectively on and normal to silica surfaces forces them to inherit the lithographically machined template topography of their substrates, allowing the sites of nucleation and the direction of growth to be controlled.  相似文献   
899.
Now that gamma-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system to the collapse of a massive star. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.  相似文献   
900.
A change in 'symmetry' is often observed when matter undergoes a phase transition-the symmetry is said to be spontaneously broken. The transition made by underdoped high-transition-temperature (high-Tc) superconductors is unusual, in that it is not a mean-field transition as seen in other superconductors. Rather, there is a region in the phase diagram above the superconducting transition temperature Tc (where phase coherence and superconductivity begin) but below a characteristic temperature T* where a 'pseudogap' appears in the spectrum of electronic excitations. It is therefore important to establish if T* is just a cross-over temperature arising from fluctuations in the order parameter that will establish superconductivity at Tc (refs 3, 4), or if it marks a phase transition where symmetry is spontaneously broken. Here we report that, for a material in the pseudogap state, left-circularly polarized photons give a different photocurrent from right-circularly polarized photons. This shows that time-reversal symmetry is spontaneously broken below T*, which therefore corresponds to a phase transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号