首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22240篇
  免费   137篇
  国内免费   57篇
系统科学   240篇
丛书文集   268篇
教育与普及   32篇
理论与方法论   146篇
现状及发展   10349篇
研究方法   889篇
综合类   10268篇
自然研究   242篇
  2013年   142篇
  2012年   407篇
  2011年   652篇
  2010年   142篇
  2008年   314篇
  2007年   330篇
  2006年   389篇
  2005年   566篇
  2004年   963篇
  2003年   795篇
  2002年   469篇
  2001年   591篇
  2000年   613篇
  1999年   418篇
  1992年   334篇
  1991年   262篇
  1990年   283篇
  1989年   271篇
  1988年   242篇
  1987年   269篇
  1986年   306篇
  1985年   381篇
  1984年   277篇
  1983年   250篇
  1982年   242篇
  1981年   240篇
  1980年   267篇
  1979年   681篇
  1978年   558篇
  1977年   538篇
  1976年   387篇
  1975年   463篇
  1974年   688篇
  1973年   558篇
  1972年   597篇
  1971年   662篇
  1970年   814篇
  1969年   670篇
  1968年   638篇
  1967年   639篇
  1966年   541篇
  1965年   449篇
  1964年   145篇
  1959年   197篇
  1958年   337篇
  1957年   255篇
  1956年   190篇
  1955年   196篇
  1954年   199篇
  1948年   131篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
291.
Molecular mechanism of anaerobic ammonium oxidation   总被引:7,自引:0,他引:7  
Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.  相似文献   
292.
293.
294.
295.
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.  相似文献   
296.
297.
298.
Leadership, social capital and incentives promote successful fisheries   总被引:4,自引:0,他引:4  
Gutiérrez NL  Hilborn R  Defeo O 《Nature》2011,470(7334):386-389
One billion people depend on seafood as their primary source of protein and 25% of the world's total animal protein comes from fisheries. Yet a third of fish stocks worldwide are overexploited or depleted. Using individual case studies, many have argued that community-based co-management should prevent the tragedy of the commons because cooperative management by fishers, managers and scientists often results in sustainable fisheries. However, general and multidisciplinary evaluations of co-management regimes and the conditions for social, economic and ecological success within such regimes are lacking. Here we examine 130 co-managed fisheries in a wide range of countries with different degrees of development, ecosystems, fishing sectors and type of resources. We identified strong leadership as the most important attribute contributing to success, followed by individual or community quotas, social cohesion and protected areas. Less important conditions included enforcement mechanisms, long-term management policies and life history of the resources. Fisheries were most successful when at least eight co-management attributes were present, showing a strong positive relationship between the number of these attributes and success, owing to redundancy in management regulations. Our results demonstrate the critical importance of prominent community leaders and robust social capital, combined with clear incentives through catch shares and conservation benefits derived from protected areas, for successfully managing aquatic resources and securing the livelihoods of communities depending on them. Our study offers hope that co-management, the only realistic solution for the majority of the world's fisheries, can solve many of the problems facing global fisheries.  相似文献   
299.
300.
Body plans, which characterize the anatomical organization of animal groups of high taxonomic rank, often evolve by the reduction or loss of appendages (limbs in vertebrates and legs and wings in insects, for example). In contrast, the addition of new features is extremely rare and is thought to be heavily constrained, although the nature of the constraints remains elusive. Here we show that the treehopper (Membracidae) 'helmet' is actually an appendage, a wing serial homologue on the first thoracic segment. This innovation in the insect body plan is an unprecedented situation in 250 Myr of insect evolution. We provide evidence suggesting that the helmet arose by escaping the ancestral repression of wing formation imparted by a member of the Hox gene family, which sculpts the number and pattern of appendages along the body axis. Moreover, we propose that the exceptional morphological diversification of the helmet was possible because, in contrast to the wings, it escaped the stringent functional requirements imposed by flight. This example illustrates how complex morphological structures can arise by the expression of ancestral developmental potentials and fuel the morphological diversification of an evolutionary lineage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号