首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16783篇
  免费   34篇
  国内免费   37篇
系统科学   71篇
丛书文集   263篇
教育与普及   30篇
理论与方法论   71篇
现状及发展   7999篇
研究方法   693篇
综合类   7566篇
自然研究   161篇
  2013年   76篇
  2012年   185篇
  2011年   365篇
  2008年   222篇
  2007年   241篇
  2006年   279篇
  2005年   270篇
  2004年   376篇
  2003年   254篇
  2002年   254篇
  2001年   479篇
  2000年   442篇
  1999年   326篇
  1994年   74篇
  1992年   286篇
  1991年   221篇
  1990年   238篇
  1989年   235篇
  1988年   202篇
  1987年   234篇
  1986年   278篇
  1985年   335篇
  1984年   230篇
  1983年   226篇
  1982年   205篇
  1981年   217篇
  1980年   224篇
  1979年   565篇
  1978年   475篇
  1977年   439篇
  1976年   341篇
  1975年   404篇
  1974年   564篇
  1973年   452篇
  1972年   474篇
  1971年   553篇
  1970年   697篇
  1969年   538篇
  1968年   539篇
  1967年   536篇
  1966年   430篇
  1965年   371篇
  1964年   121篇
  1959年   193篇
  1958年   330篇
  1957年   247篇
  1956年   190篇
  1955年   192篇
  1954年   190篇
  1948年   127篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
461.
Notch signalling pathway mediates hair cell development in mammalian cochlea   总被引:10,自引:0,他引:10  
The mammalian cochlea contains an invariant mosaic of sensory hair cells and non-sensory supporting cells reminiscent of invertebrate structures such as the compound eye in Drosophila melanogaster. The sensory epithelium in the mammalian cochlea (the organ of Corti) contains four rows of mechanosensory hair cells: a single row of inner hair cells and three rows of outer hair cells. Each hair cell is separated from the next by an interceding supporting cell, forming an invariant and alternating mosaic that extends the length of the cochlear duct. Previous results suggest that determination of cell fates in the cochlear mosaic occurs via inhibitory interactions between adjacent progenitor cells (lateral inhibition). Cells populating the cochlear epithelium appear to constitute a developmental equivalence group in which developing hair cells suppress differentiation in their immediate neighbours through lateral inhibition. These interactions may be mediated through the Notch signalling pathway, a molecular mechanism that is involved in the determination of a variety of cell fates. Here we show that genes encoding the receptor protein Notch1 and its ligand, Jagged 2, are expressed in alternating cell types in the developing sensory epithelium. In addition, genetic deletion of Jag2 results in a significant increase in sensory hair cells, presumably as a result of a decrease in Notch activation. These results provide direct evidence for Notch-mediated lateral inhibition in a mammalian system and support a role for Notch in the development of the cochlear mosaic.  相似文献   
462.
Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease   总被引:16,自引:0,他引:16  
Darier disease (DD) is an autosomal-dominant skin disorder characterized by loss of adhesion between epidermal cells (acantholysis) and abnormal keratinization. Recently we constructed a 2.4-Mb, P1-derived artificial chromosome contig spanning the DD candidate region on chromosome 12q23-24.1. After screening several genes that mapped to this region, we identified mutations in the ATP2A2 gene, which encodes the sarco/endoplasmic reticulum Ca2(+)-ATPase type 2 isoform (SERCA2) and is highly expressed in keratinocytes. Thirteen mutations were identified, including frameshift deletions, in-frame deletions or insertions, splice-site mutations and non-conservative missense mutations in functional domains. Our results demonstrate that mutations in ATP2A2 cause DD and disclose a role for this pump in a Ca(2+)-signalling pathway regulating cell-to-cell adhesion and differentiation of the epidermis.  相似文献   
463.
Oestrogens are known to enhance angiotensin biosynthesis by increasing the elaboration of its precursor, angiotensinogen. On the other hand, we found that inhibition of angiotensin-converting enzyme (ACE) suppressed the proliferative response of the rat anterior pituitary gland to oestrogens. To answer the question whether the angiotensin system is involved in the control of the cell proliferation of the uterine epithelium, the effects of an ACE inhibitor, enalapril maleate, and of angiotensins II and IV, alone or together with losartan, an antagonist of angiotensin receptor type 1 (AT1), on endometrial epithelial cell proliferation have been studied. The experiments were performed on ovariectomized female Wistar rats. In the first experiment the animals were injected with a single dose of oestradiol benzoate or received an injection of solvent only. Half of the oestrogen-treated rats were injected additionally with enalapril maleate (EN, twice daily). The incorporation of bromodeoxyuridine (BrDU) into endometrial cell nuclei was used as an index of cell proliferation. It was found that oestradiol alone dramatically increased the BrDU labelling index (LI) of endometrial cell nuclei, and this effect was partially blocked by the simultaneous treatment with EN. In the second experiment, the animals were injected intraperitoneally with angiotensin II (AII), angiotensin IV (AIV) or saline, alone or together with losartan. It was found that AIV induced an increase in the LI in uterine epithelium, and this effect was not blocked by the simultaneous treatment with losartan. The increase in LI in uterine epithelium was also observed in the rats treated with AII and with losartan. These findings suggest an involvement of angiotensin IV in the control of uterine epithelium cell proliferation. Received 12 October 1998; received after revision 6 January 1999; accepted 2 February 1999  相似文献   
464.
465.
Caenorhabditis elegans is the first animal whose genomic sequence has been determined. One of the new possibilities in post-sequence genetics is the analysis of complete gene families at once. We studied the family of heterotrimeric G proteins. C. elegans has 20 Galpha, 2 Gbeta and 2 Ggamma genes. There is 1 homologue of each of the 4 mammalian classes of Galpha genes, G(i)/G(o)alpha, G(s)alpha , G(q)alpha and G12alpha, and there are 16 new alpha genes. Although the conserved Galpha subunits are expressed in many neurons and muscle cells, GFP fusions indicate that 14 new Galpha genes are expressed almost exclusively in a small subset of the chemosensory neurons of C. elegans. We generated loss-of-function alleles using target-selected gene inactivation. None of the amphid-expressed genes are essential for viability, and only four show any detectable phenotype (chemotaxis defects), suggesting extensive functional redundancy. On the basis of functional analysis, the 20 genes encoding Galpha proteins can be divided into two groups: those that encode subunits affecting muscle activity (homologues of G(i)/G(o)alpha, G(s)alpha and G(q)), and those (14 new genes) that encode proteins most likely involved in perception.  相似文献   
466.
467.
Altered growth and function of synoviocytes, the intimal cells which line joint cavities and tendon sheaths, occur in a number of skeletal diseases. Hyperplasia of synoviocytes is found in both rheumatoid arthritis and osteoarthritis, despite differences in the underlying aetiologies of the two disorders. We have studied the autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP; MIM 208250) to identify biological pathways that lead to synoviocyte hyperplasia, the principal pathological feature of this syndrome. Using a positional-candidate approach, we identified mutations in a gene (CACP) encoding a secreted proteoglycan as the cause of CACP. The CACP protein, which has previously been identified as both 'megakaryocyte stimulating factor precursor' and 'superficial zone protein', contains domains that have homology to somatomedin B, heparin-binding proteins, mucins and haemopexins. In addition to expression in joint synovium and cartilage, CACP is expressed in non-skeletal tissues including liver and pericardium. The similarity of CACP sequence to that of other protein families and the expression of CACP in non-skeletal tissues suggest it may have diverse biological activities.  相似文献   
468.
469.
Cancela JM  Churchill GC  Galione A 《Nature》1999,398(6722):74-76
Many hormones and neurotransmitters evoke Ca2+ release from intracellular stores, often triggering agonist-specific signatures of intracellular Ca2+ concentration. Inositol trisphosphate (InsP3) and cyclic adenosine 5'-diphosphate-ribose (cADPR) are established Ca2+-mobilizing messengers that activate Ca2+ release through intracellular InsP3 and ryanodine receptors, respectively. However, in pancreatic acinar cells, neither messenger can explain the complex pattern of Ca2+ signals triggered by the secretory hormone cholecystokinin (CCK). We show here that the Ca2+-mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP), an endogenous metabolite of beta-NADP, triggers a Ca2+ response that varies from short-lasting Ca2+ spikes to a complex mixture of short-lasting (1-2s) and long-lasting (0.2-1 min) Ca2+ spikes. Cells were significantly more sensitive to NAADP than to either cADPR or InsP3, whereas higher concentrations of NAADP selectively inactivated CCK-evoked Ca2+ signals in pancreatic acinar cells, indicating that NAADP may function as an intracellular messenger in mammalian cells.  相似文献   
470.
Presenilin is required for activity and nuclear access of Notch in Drosophila   总被引:24,自引:0,他引:24  
Struhl G  Greenwald I 《Nature》1999,398(6727):522-525
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号