首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   1篇
  国内免费   2篇
系统科学   13篇
丛书文集   1篇
理论与方法论   15篇
现状及发展   80篇
研究方法   64篇
综合类   262篇
自然研究   20篇
  2021年   2篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   32篇
  2011年   49篇
  2010年   18篇
  2009年   4篇
  2008年   39篇
  2007年   44篇
  2006年   31篇
  2005年   29篇
  2004年   23篇
  2003年   36篇
  2002年   24篇
  2001年   6篇
  2000年   6篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1979年   2篇
  1978年   2篇
  1977年   6篇
  1976年   2篇
  1975年   5篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1962年   3篇
  1961年   1篇
  1960年   1篇
  1955年   1篇
  1948年   2篇
排序方式: 共有455条查询结果,搜索用时 46 毫秒
231.
232.
Summary A general mechanism is recognized that can cause specific enzymatic activity at interphases. It consists of 2 proteins bound in close juxtaposition at a micelle or membrane surface. One, the enzymesensu strictu, bears the active site, the other, the paraenzyme, is essential for generation or specific modification of the enzymatic activity.  相似文献   
233.
Anaerobic oxidation of methane (AOM) in marine sediments is an important microbial process in the global carbon cycle and in control of greenhouse gas emission. The responsible organisms supposedly reverse the reactions of methanogenesis, but cultures providing biochemical proof of this have not been isolated. Here we searched for AOM-associated cell components in microbial mats from anoxic methane seeps in the Black Sea. These mats catalyse AOM rather than carry out methanogenesis. We extracted a prominent nickel compound displaying the same absorption spectrum as the nickel cofactor F430 of methyl-coenzyme M reductase, the terminal enzyme of methanogenesis; however, the nickel compound exhibited a higher molecular mass than F430. The apparent variant of F(430) was part of an abundant protein that was purified from the mat and that consists of three different subunits. Determined amino-terminal amino acid sequences matched a gene locus cloned from the mat. Sequence analyses revealed similarities to methyl-coenzyme M reductase from methanogenic archaea. The abundance of the nickel protein (7% of extracted proteins) in the mat suggests an important role in AOM.  相似文献   
234.
Ups and downs in the Red Sea   总被引:1,自引:0,他引:1  
Sirocko F 《Nature》2003,423(6942):813-814
  相似文献   
235.
Frank SA 《Nature》2003,425(6955):251-252
  相似文献   
236.
Repair of DNA damage is essential for maintaining genome integrity, and repair deficiencies in mammals are associated with cancer, neurological disease and developmental defects. Alkylation damage in DNA is repaired by at least three different mechanisms, including damage reversal by oxidative demethylation of 1-methyladenine and 3-methylcytosine by Escherichia coli AlkB. By contrast, little is known about consequences and cellular handling of alkylation damage to RNA. Here we show that two human AlkB homologues, hABH2 and hABH3, also are oxidative DNA demethylases and that AlkB and hABH3, but not hABH2, also repair RNA. Whereas AlkB and hABH3 prefer single-stranded nucleic acids, hABH2 acts more efficiently on double-stranded DNA. In addition, AlkB and hABH3 expressed in E. coli reactivate methylated RNA bacteriophage MS2 in vivo, illustrating the biological relevance of this repair activity and establishing RNA repair as a potentially important defence mechanism in living cells. The different catalytic properties and the different subnuclear localization patterns shown by the human homologues indicate that hABH2 and hABH3 have distinct roles in the cellular response to alkylation damage.  相似文献   
237.
Peripheral infection is the natural route of transmission in most prion diseases. Peripheral prion infection is followed by rapid prion replication in lymphoid organs, neuroinvasion and progressive neurological disease. Both immune cells and nerves are involved in pathogenesis, but the mechanisms of prion transfer from the immune to the nervous system are unknown. Here we show that ablation of the chemokine receptor CXCR5 juxtaposes follicular dendritic cells (FDCs) to major splenic nerves, and accelerates the transfer of intraperitoneally administered prions into the spinal cord. Neuroinvasion velocity correlated exclusively with the relative locations of FDCs and nerves: transfer of CXCR5-/- bone marrow to wild-type mice induced perineural FDCs and enhanced neuroinvasion, whereas reciprocal transfer to CXCR5-/- mice abolished them and restored normal efficiency of neuroinvasion. Suppression of lymphotoxin signalling depleted FDCs, abolished splenic infectivity, and suppressed acceleration of pathogenesis in CXCR5-/- mice. This suggests that prion neuroimmune transition occurs between FDCs and sympathetic nerves, and relative positioning of FDCs and nerves controls the efficiency of peripheral prion infection.  相似文献   
238.
The genome of a motile marine Synechococcus   总被引:1,自引:0,他引:1  
Marine unicellular cyanobacteria are responsible for an estimated 20-40% of chlorophyll biomass and carbon fixation in the oceans. Here we have sequenced and analysed the 2.4-megabase genome of Synechococcus sp. strain WH8102, revealing some of the ways that these organisms have adapted to their largely oligotrophic environment. WH8102 uses organic nitrogen and phosphorus sources and more sodium-dependent transporters than a model freshwater cyanobacterium. Furthermore, it seems to have adopted strategies for conserving limited iron stores by using nickel and cobalt in some enzymes, has reduced its regulatory machinery (consistent with the fact that the open ocean constitutes a far more constant and buffered environment than fresh water), and has evolved a unique type of swimming motility. The genome of WH8102 seems to have been greatly influenced by horizontal gene transfer, partially through phages. The genetic material contributed by horizontal gene transfer includes genes involved in the modification of the cell surface and in swimming motility. On the basis of its genome, WH8102 is more of a generalist than two related marine cyanobacteria.  相似文献   
239.
Current views of the visual system assume that the primate brain analyses form and motion along largely independent pathways; they provide no insight into why form is sometimes interpreted as motion. In a series of psychophysical and electrophysiological experiments in humans and macaques, here we show that some form information is processed in the prototypical motion areas of the superior temporal sulcus (STS). First, we show that STS cells respond to dynamic Glass patterns, which contain no coherent motion but suggest a path of motion. Second, we show that when motion signals conflict with form signals suggesting a different path of motion, both humans and monkeys perceive motion in a compromised direction. This compromise also has a correlate in the responses of STS cells, which alter their direction preferences in the presence of conflicting implied motion information. We conclude that cells in the prototypical motion areas in the dorsal visual cortex process form that implies motion. Estimating motion by combining motion cues with form cues may be a strategy to deal with the complexities of motion perception in our natural environment.  相似文献   
240.
Mechanisms and circuitry underlying directional selectivity in the retina   总被引:10,自引:0,他引:10  
Fried SI  Münch TA  Werblin FS 《Nature》2002,420(6914):411-414
In the retina, directionally selective ganglion cells respond with robust spiking to movement in their preferred direction, but show minimal response to movement in the opposite, or null, direction. The mechanisms and circuitry underlying this computation have remained controversial. Here we show, by isolating the excitatory and inhibitory inputs to directionally selective cells and measuring direct connections between these cells and presynaptic neurons, that a presynaptic interneuron, the starburst amacrine cell, delivers direct inhibition to directionally selective cells. The processes of starburst cells are connected asymmetrically to directionally selective cells: those pointing in the null direction deliver inhibition; those pointing in the preferred direction do not. Starburst cells project inhibition laterally ahead of a stimulus moving in the null direction. In addition, starburst inhibition is itself directionally selective: it is stronger for movement in the null direction. Excitation in response to null direction movement is reduced by an inhibitory signal acting at a site that is presynaptic to the directionally selective cell. The interplay of these components generates reduced excitation and enhanced inhibition in the null direction, thereby ensuring robust directional selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号