首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25603篇
  免费   53篇
  国内免费   65篇
系统科学   107篇
丛书文集   447篇
教育与普及   61篇
理论与方法论   123篇
现状及发展   12249篇
研究方法   1010篇
综合类   11438篇
自然研究   286篇
  2013年   157篇
  2012年   307篇
  2011年   603篇
  2010年   129篇
  2008年   364篇
  2007年   404篇
  2006年   427篇
  2005年   438篇
  2004年   511篇
  2003年   403篇
  2002年   408篇
  2001年   671篇
  2000年   645篇
  1999年   454篇
  1992年   415篇
  1991年   326篇
  1990年   352篇
  1989年   355篇
  1988年   329篇
  1987年   349篇
  1986年   407篇
  1985年   508篇
  1984年   335篇
  1983年   329篇
  1982年   284篇
  1981年   308篇
  1980年   345篇
  1979年   856篇
  1978年   682篇
  1977年   685篇
  1976年   509篇
  1975年   599篇
  1974年   837篇
  1973年   694篇
  1972年   729篇
  1971年   811篇
  1970年   1029篇
  1969年   832篇
  1968年   844篇
  1967年   816篇
  1966年   673篇
  1965年   540篇
  1964年   176篇
  1959年   294篇
  1958年   512篇
  1957年   391篇
  1956年   328篇
  1955年   308篇
  1954年   306篇
  1948年   214篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
321.
Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.  相似文献   
322.
One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cis-regulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D. sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select genes.  相似文献   
323.
Smith CG  Aylward AD  Millward GH  Miller S  Moore LE 《Nature》2007,445(7126):399-401
The upper atmospheres of the four Solar System giant planets exhibit high temperatures that cannot be explained by the absorption of sunlight. In the case of Saturn the temperatures predicted by models of solar heating are approximately 200 K, compared to temperatures of approximately 400 K observed independently in the polar regions and at 30 degrees latitude. This unexplained 'energy crisis' represents a major gap in our understanding of these planets' atmospheres. An important candidate for the source of the missing energy is the magnetosphere, which injects energy mostly in the polar regions of the planet. This polar energy input is believed to be sufficient to explain the observed temperatures, provided that it is efficiently redistributed globally by winds, a process that is not well understood. Here we show, using a numerical model, that the net effect of the winds driven by the polar energy inputs is not to heat but to cool the low-latitude thermosphere. This surprising result allows us to rule out known polar energy inputs as the solution to the energy crisis at Saturn. There is either an unknown--and large--source of polar energy, or, more probably, some other process heats low latitudes directly.  相似文献   
324.
Pearson DG  Parman SW  Nowell GM 《Nature》2007,449(7159):202-205
Although Earth's continental crust is thought to have been derived from the mantle, the timing and mode of crust formation have proven to be elusive issues. The area of preserved crust diminishes markedly with age, and this can be interpreted as being the result of either the progressive accumulation of new crust or the tectonic recycling of old crust. However, there is a disproportionate amount of crust of certain ages, with the main peaks being 1.2, 1.9, 2.7 and 3.3 billion years old; this has led to a third model in which the crust has grown through time in pulses, although peaks in continental crust ages could also record preferential preservation. The 187Re-187Os decay system is unique in its ability to track melt depletion events within the mantle and could therefore potentially link the crust and mantle differentiation records. Here we employ a laser ablation technique to analyse large numbers of osmium alloy grains to quantify the distribution of depletion ages in the Earth's upper mantle. Statistical analysis of these data, combined with other samples of the upper mantle, show that depletion ages are not evenly distributed but cluster in distinct periods, around 1.2, 1.9 and 2.7 billion years. These mantle depletion events coincide with peaks in the generation of continental crust and so provide evidence of coupled, global and pulsed mantle-crust differentiation, lending strong support to pulsed models of continental growth by means of large-scale mantle melting events.  相似文献   
325.
326.
Qu X  Wen JD  Lancaster L  Noller HF  Bustamante C  Tinoco I 《Nature》2011,475(7354):118-121
The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.  相似文献   
327.
Che H  Drake JF  Swisdak M 《Nature》2011,474(7350):184-187
During magnetic reconnection, the field lines must break and reconnect to release the energy that drives solar and stellar flares and other explosive events in space and in the laboratory. Exactly how this happens has been unclear, because dissipation is needed to break magnetic field lines and classical collisions are typically weak. Ion-electron drag arising from turbulence, dubbed 'anomalous resistivity', and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory support the anomalous resistivity idea but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report computer simulations that show that neither of the two previously favoured mechanisms controls how magnetic field lines reconnect in the plasmas of greatest interest, those in which the magnetic field dominates the energy budget. Rather, we find that when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that causes the rate of reconnection to increase abruptly. This filamentary web can be explored in the laboratory or in space with satellites that can measure the resulting electromagnetic turbulence.  相似文献   
328.
During the refereeing procedure of Anthropomorphic Quantum Darwinism by Thomas Durt, it became apparent in the dialogue between him and me that the definition of information in Physics is something about which not all authors agreed. This text aims at describing the concepts associated to information that are accepted as the standard in the Physics world community.  相似文献   
329.
Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy for AMD and other chronic inflammatory diseases.  相似文献   
330.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140?mm?Hg systolic blood pressure or ≥90?mm?Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号