首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16618篇
  免费   41篇
  国内免费   48篇
系统科学   108篇
丛书文集   181篇
教育与普及   32篇
理论与方法论   94篇
现状及发展   7181篇
研究方法   833篇
综合类   7929篇
自然研究   349篇
  2013年   127篇
  2012年   306篇
  2011年   617篇
  2010年   123篇
  2008年   350篇
  2007年   330篇
  2006年   359篇
  2005年   369篇
  2004年   347篇
  2003年   312篇
  2002年   295篇
  2001年   475篇
  2000年   452篇
  1999年   324篇
  1992年   280篇
  1991年   212篇
  1990年   231篇
  1989年   225篇
  1988年   225篇
  1987年   222篇
  1986年   215篇
  1985年   305篇
  1984年   248篇
  1983年   169篇
  1982年   179篇
  1981年   167篇
  1980年   188篇
  1979年   444篇
  1978年   332篇
  1977年   340篇
  1976年   318篇
  1975年   342篇
  1974年   419篇
  1973年   401篇
  1972年   411篇
  1971年   464篇
  1970年   604篇
  1969年   508篇
  1968年   546篇
  1967年   490篇
  1966年   423篇
  1965年   318篇
  1964年   125篇
  1959年   183篇
  1958年   308篇
  1957年   209篇
  1956年   195篇
  1955年   156篇
  1954年   188篇
  1948年   146篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Genomic alterations lead to cancer complexity and form a major hurdle for comprehensive understanding of the molecular mechanisms underlying oncogenesis. In this review, we describe recent advances in studying cancer-associated genes from a systems biology point of view. The integration of known cancer genes onto protein and signaling networks reveals the characteristics of cancer genes within networks. This approach shows that cancer genes often function as network hub proteins which are involved in many cellular processes and form focal nodes in information exchange between many signaling pathways. Literature mining allows constructing gene-gene networks, in which new cancer genes can be identified. The gene expression profiles of cancer cells are used for reconstructing gene regulatory networks. By doing so, genes which are involved in the regulation of cancer progression can be picked up from these networks, after which their functions can be further confirmed in the laboratory.  相似文献   
172.
Proinsulin C-peptide is known to bind specifically to cell membranes and to exert intracellular effects, but whether it is internalized in target cells is unknown. In this study, using confocal microscopy and immunostained or rhodamine-labeled peptide, we show that C-peptide is internalized and localized to the cytosol of Swiss 3T3 and HEK-293 cells. In addition, transport into nuclei was found using the labeled peptide. The internalization was followed at 37°C for up to 1 h, and was reduced at 4°C and after preincubation with pertussis toxin. Hence, it is concluded to occur via an energy-dependent, pertussis toxin-sensitive mechanism and without detectable degradation within the experimental time course. Surface plasmon resonance measurements demonstrated binding of HEK-293 cell extract components to C-peptide, and subsequent elution of bound material revealed the components to be intracellular proteins. The identification of C-peptide cellular internalization, intracellular binding proteins, absence of rapid subsequent C-peptide degradation and apparent nuclear internalization support a maintained activity similar to that of an intracrine peptide hormone. Hence, the data suggest the possibility of one further C-peptide site of action. Received 31 October 2006; received after revision 27 December 2006; accepted 30 December 2006  相似文献   
173.
Germline gain-of-function mutations in SOS1 cause Noonan syndrome   总被引:1,自引:0,他引:1  
Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.  相似文献   
174.
Many genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome. Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are specifically packaged with nucleosomes containing histone H3 trimethylated on Lys27. This chromatin mark is established on these unmethylated CpG island genes early in development and then maintained in differentiated cell types by the presence of an EZH2-containing Polycomb complex. In cancer cells, as opposed to normal cells, the presence of this complex brings about the recruitment of DNA methyl transferases, leading to de novo methylation. These results suggest that tumor-specific targeting of de novo methylation is pre-programmed by an established epigenetic system that normally has a role in marking embryonic genes for repression.  相似文献   
175.
176.
The autosomal recessive disorder Shwachman-Diamond syndrome, characterized by bone marrow failure and leukemia predisposition, is caused by deficiency of the highly conserved Shwachman-Bodian-Diamond syndrome (SBDS) protein. Here, we identify the function of the yeast SBDS ortholog Sdo1, showing that it is critical for the release and recycling of the nucleolar shuttling factor Tif6 from pre-60S ribosomes, a key step in 60S maturation and translational activation of ribosomes. Using genome-wide synthetic genetic array mapping, we identified multiple TIF6 gain-of-function alleles that suppressed the pre-60S nuclear export defects and cytoplasmic mislocalization of Tif6 observed in sdo1Delta cells. Sdo1 appears to function within a pathway containing elongation factor-like 1, and together they control translational activation of ribosomes. Thus, our data link defective late 60S ribosomal subunit maturation to an inherited bone marrow failure syndrome associated with leukemia predisposition.  相似文献   
177.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   
178.
179.
180.
Hypertriglyceridemia is a hallmark of many disorders, including metabolic syndrome, diabetes, atherosclerosis and obesity. A well-known cause is the deficiency of lipoprotein lipase (LPL), a key enzyme in plasma triglyceride hydrolysis. Mice carrying the combined lipase deficiency (cld) mutation show severe hypertriglyceridemia owing to a decrease in the activity of LPL and a related enzyme, hepatic lipase (HL), caused by impaired maturation of nascent LPL and hepatic lipase polypeptides in the endoplasmic reticulum (ER). Here we identify the gene containing the cld mutation as Tmem112 and rename it Lmf1 (Lipase maturation factor 1). Lmf1 encodes a transmembrane protein with an evolutionarily conserved domain of unknown function that localizes to the ER. A human subject homozygous for a deleterious mutation in LMF1 also shows combined lipase deficiency with concomitant hypertriglyceridemia and associated disorders. Thus, through its profound effect on lipase activity, LMF1 emerges as an important candidate gene in hypertriglyceridemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号