首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15134篇
  免费   28篇
  国内免费   47篇
系统科学   63篇
丛书文集   181篇
教育与普及   32篇
理论与方法论   73篇
现状及发展   6180篇
研究方法   786篇
综合类   7609篇
自然研究   285篇
  2013年   105篇
  2012年   264篇
  2011年   543篇
  2010年   105篇
  2008年   321篇
  2007年   304篇
  2006年   321篇
  2005年   329篇
  2004年   319篇
  2003年   280篇
  2002年   260篇
  2001年   458篇
  2000年   442篇
  1999年   311篇
  1992年   267篇
  1991年   197篇
  1990年   224篇
  1989年   219篇
  1988年   223篇
  1987年   218篇
  1986年   205篇
  1985年   293篇
  1984年   229篇
  1983年   158篇
  1982年   167篇
  1981年   152篇
  1980年   181篇
  1979年   418篇
  1978年   309篇
  1977年   307篇
  1976年   289篇
  1975年   323篇
  1974年   385篇
  1973年   363篇
  1972年   379篇
  1971年   434篇
  1970年   550篇
  1969年   462篇
  1968年   469篇
  1967年   431篇
  1966年   383篇
  1965年   285篇
  1964年   87篇
  1959年   169篇
  1958年   297篇
  1957年   199篇
  1956年   185篇
  1955年   150篇
  1954年   185篇
  1948年   138篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
191.
Heart regeneration   总被引:1,自引:0,他引:1  
Laflamme MA  Murry CE 《Nature》2011,473(7347):326-335
Heart failure plagues industrialized nations, killing more people than any other disease. It usually results from a deficiency of specialized cardiac muscle cells known as cardiomyocytes, and a robust therapy to regenerate lost myocardium could help millions of patients every year. Heart regeneration is well documented in amphibia and fish and in developing mammals. After birth, however, human heart regeneration becomes limited to very slow cardiomyocyte replacement. Several experimental strategies to remuscularize the injured heart using adult stem cells and pluripotent stem cells, cellular reprogramming and tissue engineering are in progress. Although many challenges remain, these interventions may eventually lead to better approaches to treat or prevent heart failure.  相似文献   
192.
193.
194.
Chen H  Gu X  Liu Y  Wang J  Wirt SE  Bottino R  Schorle H  Sage J  Kim SK 《Nature》2011,478(7369):349-355
Determining the signalling pathways that direct tissue expansion is a principal goal of regenerative biology. Vigorous pancreatic β-cell replication in juvenile mice and humans declines with age, and elucidating the basis for this decay may reveal strategies for inducing β-cell expansion, a long-sought goal for diabetes therapy. Here we show that platelet-derived growth factor receptor (Pdgfr) signalling controls age-dependent β-cell proliferation in mouse and human pancreatic islets. With age, declining β-cell Pdgfr levels were accompanied by reductions in β-cell enhancer of zeste homologue 2 (Ezh2) levels and β-cell replication. Conditional inactivation of the Pdgfra gene in β-cells accelerated these changes, preventing mouse neonatal β-cell expansion and adult β-cell regeneration. Targeted human PDGFR-α activation in mouse β-cells stimulated Erk1/2 phosphorylation, leading to Ezh2-dependent expansion of adult β-cells. Adult human islets lack PDGF signalling competence, but exposure of juvenile human islets to PDGF-AA stimulated β-cell proliferation. The discovery of a conserved pathway controlling age-dependent β-cell proliferation indicates new strategies for β-cell expansion.  相似文献   
195.
In vivo genome editing restores haemostasis in a mouse model of haemophilia   总被引:2,自引:0,他引:2  
Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.  相似文献   
196.
197.
The role of African savannahs in the evolution of early hominins has been debated for nearly a century. Resolution of this issue has been hindered by difficulty in quantifying the fraction of woody cover in the fossil record. Here we show that the fraction of woody cover in tropical ecosystems can be quantified using stable carbon isotopes in soils. Furthermore, we use fossil soils from hominin sites in the Awash and Omo-Turkana basins in eastern Africa to reconstruct the fraction of woody cover since the Late Miocene epoch (about 7 million years ago). (13)C/(12)C ratio data from 1,300 palaeosols at or adjacent to hominin sites dating to at least 6 million years ago show that woody cover was predominantly less than ~40% at most sites. These data point to the prevalence of open environments at the majority of hominin fossil sites in eastern Africa over the past 6 million years.  相似文献   
198.
Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.  相似文献   
199.
An integrated semiconductor device enabling non-optical genome sequencing   总被引:4,自引:0,他引:4  
The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号