首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16985篇
  免费   34篇
  国内免费   37篇
系统科学   71篇
丛书文集   263篇
教育与普及   30篇
理论与方法论   75篇
现状及发展   8082篇
研究方法   694篇
综合类   7680篇
自然研究   161篇
  2013年   80篇
  2012年   187篇
  2011年   364篇
  2008年   222篇
  2007年   242篇
  2006年   282篇
  2005年   271篇
  2004年   410篇
  2003年   282篇
  2002年   267篇
  2001年   493篇
  2000年   442篇
  1999年   328篇
  1994年   81篇
  1992年   288篇
  1991年   221篇
  1990年   238篇
  1989年   239篇
  1988年   205篇
  1987年   234篇
  1986年   281篇
  1985年   340篇
  1984年   235篇
  1983年   226篇
  1982年   206篇
  1981年   223篇
  1980年   225篇
  1979年   566篇
  1978年   477篇
  1977年   443篇
  1976年   345篇
  1975年   408篇
  1974年   565篇
  1973年   458篇
  1972年   480篇
  1971年   558篇
  1970年   698篇
  1969年   540篇
  1968年   541篇
  1967年   536篇
  1966年   430篇
  1965年   371篇
  1964年   121篇
  1959年   193篇
  1958年   330篇
  1957年   247篇
  1956年   190篇
  1955年   192篇
  1954年   190篇
  1948年   128篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
311.
Stem and progenitor cells are characterized by their ability to self-renew and produce differentiated progeny. A fine balance between these processes is achieved through controlled asymmetric divisions and is necessary to generate cellular diversity during development and to maintain adult tissue homeostasis. Disruption of this balance may result in premature depletion of the stem/progenitor cell pool, or abnormal growth. In many tissues, including the brain, dysregulated asymmetric divisions are associated with cancer. Whether there is a causal relationship between asymmetric cell division defects and cancer initiation is as yet not known. Here, we review the cellular and molecular mechanisms that regulate asymmetric cell divisions in the neural lineage and discuss the potential connections between this regulatory machinery and cancer.  相似文献   
312.
Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium, and contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis. Although activated myofibroblasts are the main effector cells in the fibrotic heart, monocytes/macrophages, lymphocytes, mast cells, vascular cells and cardiomyocytes may also contribute to the fibrotic response by secreting key fibrogenic mediators. Inflammatory cytokines and chemokines, reactive oxygen species, mast cell-derived proteases, endothelin-1, the renin/angiotensin/aldosterone system, matricellular proteins, and growth factors (such as TGF-β and PDGF) are some of the best-studied mediators implicated in cardiac fibrosis. Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible. Understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.  相似文献   
313.
Under physiological and pathological conditions, extracellular vesicles (EVs) are present in the extracellular compartment simultaneously with soluble mediators. We hypothesized that cytokine effects may be modulated by EVs, the recently recognized conveyors of intercellular messages. In order to test this hypothesis, human monocyte cells were incubated with CCRF acute lymphoblastic leukemia cell line-derived EVs with or without the addition of recombinant human TNF, and global gene expression changes were analyzed. EVs alone regulated the expression of numerous genes related to inflammation and signaling. In combination, the effects of EVs and TNF were additive, antagonistic, or independent. The differential effects of EVs and TNF or their simultaneous presence were also validated by Taqman assays and ELISA, and by testing different populations of purified EVs. In the case of the paramount chemokine IL-8, we were able to demonstrate a synergistic upregulation by purified EVs and TNF. Our data suggest that neglecting the modulating role of EVs on the effects of soluble mediators may skew experimental results. On the other hand, considering the combined effects of cytokines and EVs may prove therapeutically useful by targeting both compartments at the same time.  相似文献   
314.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.  相似文献   
315.
Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.  相似文献   
316.
317.
318.
319.
We identified a SNP in the DPP6 gene that is consistently strongly associated with susceptibility to amyotrophic lateral sclerosis (ALS) in different populations of European ancestry, with an overall P value of 5.04 x 10(-8) in 1,767 cases and 1,916 healthy controls and with an odds ratio of 1.30 (95% confidence interval (CI) of 1.18-1.43). Our finding is the first report of a genome-wide significant association with sporadic ALS and may be a target for future functional studies.  相似文献   
320.
This review discusses the state-of-the-art in molecular research on the most prominent and widely applied lantibiotic, i.e., nisin. The developments in understanding its complex biosynthesis and mode of action are highlighted. Moreover, novel applications arising from engineering either nisin itself, or from the construction of totally novel dehydrated and/or lanthionine-containing peptides with desired bioactivities are described. Several challenges still exist in understanding the immunity system and the unique multiple reactions occurring on a single substrate molecule, carried out by the dehydratase NisB and the cyclization enzyme NisC. The recent elucidation of the 3-D structure of NisC forms the exciting beginning of further 3-D-structure determinations of the other biosynthetic enzymes, transporters and immunity proteins. Advances in achieving in vitro activities of lanthionine-forming enzymes will greatly enhance our understanding of the molecular characteristics of the biosynthesis process, opening up new avenues for developing unique and novel biocatalytic processes. Received 9 April 2007; received after revision 31 August 2007; accepted 28 September 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号