首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3186篇
  免费   87篇
  国内免费   13篇
系统科学   118篇
丛书文集   3篇
教育与普及   2篇
理论与方法论   30篇
现状及发展   1011篇
研究方法   36篇
综合类   2072篇
自然研究   14篇
  2024年   14篇
  2023年   27篇
  2022年   9篇
  2020年   12篇
  2017年   11篇
  2016年   30篇
  2015年   56篇
  2014年   27篇
  2013年   23篇
  2012年   149篇
  2011年   162篇
  2008年   7篇
  2007年   13篇
  2006年   15篇
  2005年   202篇
  2004年   509篇
  2003年   469篇
  2002年   143篇
  2001年   77篇
  2000年   139篇
  1999年   76篇
  1992年   37篇
  1991年   25篇
  1990年   35篇
  1989年   34篇
  1988年   33篇
  1987年   16篇
  1986年   26篇
  1985年   35篇
  1984年   26篇
  1983年   26篇
  1982年   15篇
  1981年   11篇
  1980年   16篇
  1979年   61篇
  1978年   39篇
  1977年   30篇
  1976年   29篇
  1975年   38篇
  1974年   56篇
  1973年   49篇
  1972年   50篇
  1971年   66篇
  1970年   55篇
  1969年   69篇
  1968年   59篇
  1967年   41篇
  1966年   55篇
  1965年   41篇
  1964年   11篇
排序方式: 共有3286条查询结果,搜索用时 31 毫秒
91.
92.
93.
A series of pharmacological and physiological studies have demonstrated the functional cross-regulation between MOR and NMDAR. These receptors coexist at postsynaptic sites in midbrain periaqueductal grey (PAG) neurons, an area implicated in the analgesic effects of opioids like morphine. In this study, we found that the MOR-associated histidine triad nucleotide-binding protein 1 (HINT1) is essential for maintaining the connection between the NMDAR and MOR. Morphine-induced analgesic tolerance is prevented and even rescued by inhibiting PKC or by antagonizing NMDAR. However, in the absence of HINT1, the MOR becomes supersensitive to morphine before suffering a profound and lasting desensitization that is refractory to PKC inhibition or NMDAR antagonism. Thus, HINT1 emerges as a key protein that is critical for sustaining NMDAR-mediated regulation of MOR signaling strength. Thus, HINT1 deficiency may contribute to opioid-intractable pain syndromes by causing long-term MOR desensitization via mechanisms independent of NMDAR.  相似文献   
94.
95.
Important to the function of calpains is temporal and spatial regulation of their proteolytic activity. Here, we demonstrate that cytoplasm-resident calpain 2 cleaves human nuclear topoisomerase I (hTOP1) via Ca2+-activated proteolysis and nucleoplasmic shuttling of proteases. This proteolysis of hTOP1 was induced by either ionomycin-caused Ca2+ influx or addition of Ca2+ in cellular extracts. Ca2+ failed to induce hTOP1 proteolysis in calpain 2-knockdown cells. Moreover, calpain 2 cleaved hTOP1 in vitro. Furthermore, calpain 2 entered the nucleus upon Ca2+ influx, and calpastatin interfered with this process. Calpain 2 cleavage sites were mapped at K158 and K183 of hTOP1. Calpain 2-truncated hTOP1 exhibited greater relaxation activity but remained able to interact with nucleolin and to form cleavable complexes. Interestingly, calpain 2 appears to be involved in ionomycin-induced protection from camptothecin-induced cytotoxicity. Thus, our data suggest that nucleocytoplasmic shuttling may serve as a novel type of regulation for calpain 2-mediated nuclear proteolysis.  相似文献   
96.
The myogenic transcriptional network   总被引:2,自引:0,他引:2  
  相似文献   
97.
Visual perception and memory are the most important components of vision processing in the brain. It was thought that the perceptual aspect of a visual stimulus occurs in visual cortical areas and that this serves as the substrate for the formation of visual memory in a distinct part of the brain called the medial temporal lobe. However, current evidence indicates that there is no functional separation of areas. Entire visual cortical pathways and connecting medial temporal lobe are important for both perception and visual memory. Though some aspects of this view are debated, evidence from both sides will be explored here. In this review, we will discuss the anatomical and functional architecture of the entire system and the implications of these structures in visual perception and memory.  相似文献   
98.
Naturally occurring antimicrobial peptides (AMPs) present several drawbacks that strongly limit their development into therapeutically valuable antibiotics. These include susceptibility to protease degradation and high costs of manufacture. To overcome these problems, researchers have tried to develop mimics or peptidomimetics endowed with better properties, while retaining the basic features of membrane-active natural AMPs such as cationic charge and amphipathic design. Protein epitope mimetics, multimeric (dendrimeric) peptides, oligoacyllysines, ceragenins, synthetic lipidated peptides, peptoids and other foldamers are some of the routes explored so far. The synthetic approach has led to compounds that have already entered clinical evaluation for the treatment of specific conditions, such as Staphylococcus (MRSA) infections. Should these trials be successful, an important proof-of-concept would be established, showing that synthetic oligomers rather than naturally occurring molecules could bring peptide-based antibiotics to clinical practice and the drug market for local and systemic treatment of medical conditions associated with multi-drug resistant pathogens.  相似文献   
99.
Malaria presents a challenge to world health that to date has been beyond the abilities of researchers to conquer. This critique presents some of the strategies employed by the parasite to overcome immunity and the immunological challenges that we face to develop vaccines. A conclusion is that a vaccine must identify novel antigens or epitopes that are not normally immunogenic and which are therefore not under immune pressure and most likely to be conserved between different strains. Such antigens are most likely to be targets of cellular immunity. The case for a whole parasite blood stage vaccine is presented based on these premises.  相似文献   
100.
Prokineticins are proteins that regulate diverse biological processes including gastrointestinal motility, angiogenesis, circadian rhythm, and innate immune response. Prokineticins bind two closed related G-protein coupled receptors (GPCRs), PKR1 and PKR2. In general, these receptors act as molecular switches to relay activation to heterotrimeric G-proteins and a growing body of evidence points to the fact that GPCRs exist as homo- or heterodimers. We show here by Western-blot analysis that PKR2 has a dimeric structure in neutrophils. By heterologous expression of PKR2 in Saccharomyces cerevisiae, we examined the mechanisms of intermolecular interaction of PKR2 dimerization. The potential involvement of three types of mechanisms was investigated: coiled-coil, disulfide bridges, and hydrophobic interactions between transmembrane domains. Characterization of differently deleted or site-directed PKR2 mutants suggests that dimerization proceeds through interactions between transmembrane domains. We demonstrate that co-expressing binding-deficient and signaling-deficient forms of PKR2 can re-establish receptor functionality, possibly through a domain-swapping mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号