首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   1篇
  国内免费   3篇
系统科学   4篇
理论与方法论   1篇
现状及发展   63篇
研究方法   40篇
综合类   168篇
自然研究   10篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   21篇
  2011年   30篇
  2010年   2篇
  2009年   1篇
  2008年   22篇
  2007年   11篇
  2006年   12篇
  2005年   14篇
  2004年   11篇
  2003年   13篇
  2002年   19篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1996年   2篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1987年   4篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   10篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1970年   8篇
  1969年   4篇
  1968年   4篇
  1967年   5篇
  1966年   4篇
  1965年   3篇
  1963年   1篇
  1961年   2篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
271.
Not just angiotensinases: new roles for the angiotensin-converting enzymes   总被引:1,自引:0,他引:1  
The renin-angiotensin system (RAS) is a critical regulator of blood pressure and fluid homeostasis. Angiotensin II, the primary bioactive peptide of the RAS, is generated from angiotensin I by angiotensin-converting enzyme (ACE). A homologue of ACE, ACE2, is able to convert angiotensin II to a peptide with opposing effects, angiotensin-(1-7). It is proposed that disturbance of the balance of ACE and ACE2 expression and/or function is important in pathologies in which angiotensin II plays a role. These include cardiovascular and renal disease, lung injury and liver fibrosis. The critical roles of ACE and ACE2 in regulating angiotensin II levels have traditionally focussed attention on their activities as angiotensinases. Recent discoveries, however, have illuminated the roles of these enzymes and of the ACE2 homologue, collectrin, in intracellular trafficking and signalling. This paper reviews the key literature regarding both the catalytic and non-catalytic roles of the angiotensin-converting enzyme gene family.  相似文献   
272.
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits.  相似文献   
273.
Chemotherapy is one of the most effective and broadly used approaches for cancer management and many modern regimes can eliminate the bulk of the cancer cells. However, recurrence and metastasis still remain a major obstacle leading to the failure of systemic cancer treatments. Therefore, to improve the long-term eradication of cancer, the cellular and molecular pathways that provide targets which play crucial roles in drug resistance should be identified and characterised. Multidrug resistance (MDR) and the existence of tumor-initiating cells, also referred to as cancer stem cells (CSCs), are two major contributors to the failure of chemotherapy. MDR describes cancer cells that become resistant to structurally and functionally unrelated anti-cancer agents. CSCs are a small population of cells within cancer cells with the capacity of self-renewal, tumor metastasis, and cell differentiation. CSCs are also believed to be associated with chemoresistance. Thus, MDR and CSCs are the greatest challenges for cancer chemotherapy. A significant effort has been made to identify agents that specifically target MDR cells and CSCs. Consequently, some agents derived from nature have been developed with a view that they may overcome MDR and/or target CSCs. In this review, natural products-targeting MDR cancer cells and CSCs are summarized and clustered by their targets in different signaling pathways.  相似文献   
274.
Leon Bly Tunnel, which connects Eagle Lake to Willow Creek, was investigated to see if the water issuing from the tunnel was lake water or spring water and to check reports of its being inhabited by fish. We found that the water was similar to that of highly alkaline Eagle Lake, despite a block placed in the tunnel in 1986. Five species of fish were found in the tunnel, the same species inhabiting both Willow Creek and Eagle Lake, although the creek was much warmer and less alkaline than the lake. The fish originated from the creek. Fish in the tunnel were either not feeding or were consuming snails ( Vorticifex sp.), the principal invertebrate present. The largest fish (35 cm SL) captured were rainbow trout ( Oncorhynchus mykiss ).  相似文献   
275.
Summary A protinin (Trasylol) is shown to enhance the response of spleen cells from normal and tumour bearing mice to PPD and tumour cells. This enhancement is greater in the tumour-bearing mice.Acknowledgments. We are grateful to Bayer (U.K.) Limited for generous supplies of aprotinin. The PPD was supplied by the Ministry of Agriculture. The work was supported by a grant from the North of England Cancer Research Campaign.  相似文献   
276.
Our genome-wide association study of celiac disease previously identified risk variants in the IL2-IL21 region. To identify additional risk variants, we genotyped 1,020 of the most strongly associated non-HLA markers in an additional 1,643 cases and 3,406 controls. Through joint analysis including the genome-wide association study data (767 cases, 1,422 controls), we identified seven previously unknown risk regions (P < 5 x 10(-7)). Six regions harbor genes controlling immune responses, including CCR3, IL12A, IL18RAP, RGS1, SH2B3 (nsSNP rs3184504) and TAGAP. Whole-blood IL18RAP mRNA expression correlated with IL18RAP genotype. Type 1 diabetes and celiac disease share HLA-DQ, IL2-IL21, CCR3 and SH2B3 risk regions. Thus, this extensive genome-wide association follow-up study has identified additional celiac disease risk variants in relevant biological pathways.  相似文献   
277.
278.
Silencing of unsynapsed meiotic chromosomes in the mouse   总被引:23,自引:0,他引:23  
In Neurospora, DNA unpaired in meiosis both is silenced and induces silencing of all DNA homologous to it. This process, called meiotic silencing by unpaired DNA, is thought to protect the host genome from invasion by transposable elements. We now show that silencing of unpaired (unsynapsed) chromosome regions also takes place in the mouse during both male and female meiosis. The tumor suppressor protein BRCA1 is implicated in this silencing, mirroring its role in the meiotic silencing of the X and Y chromosomes in normal male meiosis. These findings impact on the interpretation of the relationship between synaptic errors and sterility in mammals and extend our understanding of the biology of Brca1.  相似文献   
279.
Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation. At least eight autosomal genes involved in idiopathic epilepsy have been identified, and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome-linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine and polyglutamine disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.  相似文献   
280.
Saving sulfur     
Jamieson D 《Nature genetics》2002,31(3):228-230
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号