首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   0篇
系统科学   11篇
丛书文集   1篇
理论与方法论   14篇
现状及发展   41篇
研究方法   120篇
综合类   218篇
自然研究   13篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   5篇
  2012年   55篇
  2011年   66篇
  2010年   12篇
  2009年   9篇
  2008年   51篇
  2007年   27篇
  2006年   26篇
  2005年   29篇
  2004年   40篇
  2003年   20篇
  2002年   22篇
  2000年   3篇
  1999年   8篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1986年   1篇
  1984年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有418条查询结果,搜索用时 31 毫秒
61.
62.
Oxidation is an important method for the synthesis of chemical intermediates in the manufacture of high-tonnage commodities, high-value fine chemicals, agrochemicals and pharmaceuticals: but oxidations are often inefficient. The introduction of catalytic systems using oxygen from air is preferred for 'green' processing. Gold catalysis is now showing potential in selective redox processes, particularly for alcohol oxidation and the direct synthesis of hydrogen peroxide. However, a major challenge that persists is the synthesis of an epoxide by the direct electrophilic addition of oxygen to an alkene. Although ethene is epoxidized efficiently using molecular oxygen with silver catalysts in a large-scale industrial process, this is unique because higher alkenes can only be effectively epoxidized using hydrogen peroxide, hydroperoxides or stoichiometric oxygen donors. Here we show that nanocrystalline gold catalysts can provide tunable active catalysts for the oxidation of alkenes using air, with exceptionally high selectivity to partial oxidation products ( approximately 98%) and significant conversions. Our finding significantly extends the discovery by Haruta that nanocrystalline gold can epoxidize alkenes when hydrogen is used to activate the molecular oxygen; in our case, no sacrificial reductant is needed. We anticipate that our finding will initiate attempts to understand more fully the mechanism of oxygen activation at gold surfaces, which might lead to commercial exploitation of the high redox activity of gold nanocrystals.  相似文献   
63.
O'Connor PM  Claessens LP 《Nature》2005,436(7048):253-256
Birds are unique among living vertebrates in possessing pneumaticity of the postcranial skeleton, with invasion of bone by the pulmonary air-sac system. The avian respiratory system includes high-compliance air sacs that ventilate a dorsally fixed, non-expanding parabronchial lung. Caudally positioned abdominal and thoracic air sacs are critical components of the avian aspiration pump, facilitating flow-through ventilation of the lung and near-constant airflow during both inspiration and expiration, highlighting a design optimized for efficient gas exchange. Postcranial skeletal pneumaticity has also been reported in numerous extinct archosaurs including non-avian theropod dinosaurs and Archaeopteryx. However, the relationship between osseous pneumaticity and the evolution of the avian respiratory apparatus has long remained ambiguous. Here we report, on the basis of a comparative analysis of region-specific pneumaticity with extant birds, evidence for cervical and abdominal air-sac systems in non-avian theropods, along with thoracic skeletal prerequisites of an avian-style aspiration pump. The early acquisition of this system among theropods is demonstrated by examination of an exceptional new specimen of Majungatholus atopus, documenting these features in a taxon only distantly related to birds. Taken together, these specializations imply the existence of the basic avian pulmonary Bauplan in basal neotheropods, indicating that flow-through ventilation of the lung is not restricted to birds but is probably a general theropod characteristic.  相似文献   
64.
65.
All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.  相似文献   
66.
Striated muscles are present in bilaterian animals (for example, vertebrates, insects and annelids) and some non-bilaterian eumetazoans (that is, cnidarians and ctenophores). The considerable ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin. Here we show that a muscle protein core set, including a type II myosin heavy chain (MyHC) motor protein characteristic of striated muscles in vertebrates, was already present in unicellular organisms before the origin of multicellular animals. Furthermore, 'striated muscle' and 'non-muscle' myhc orthologues are expressed differentially in two sponges, compatible with a functional diversification before the origin of true muscles and the subsequent use of striated muscle MyHC in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess striated muscle myhc orthologues but lack crucial components of bilaterian striated muscles, such as genes that code for titin and the troponin complex, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian Z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of new proteins to a pre-existing, ancestral contractile apparatus may serve as a model for the evolution of complex animal cell types.  相似文献   
67.
68.
Chromatin-modifying enzymes as modulators of reprogramming   总被引:2,自引:0,他引:2  
  相似文献   
69.
After terrestrialization, the diversification of arthropods and vertebrates is thought to have occurred in two distinct phases, the first between the Silurian and the Frasnian stages (Late Devonian period) (425-385?million years (Myr) ago), and the second characterized by the emergence of numerous new major taxa, during the Late Carboniferous period (after 345?Myr ago). These two diversification periods bracket the depauperate vertebrate Romer's gap (360-345?Myr ago) and arthropod gap (385-325?Myr ago), which could be due to preservational artefact. Although a recent molecular dating has given an age of 390?Myr for the Holometabola, the record of hexapods during the Early-Middle Devonian (411.5-391?Myr ago, Pragian to Givetian stages) is exceptionally sparse and based on fragmentary remains, which hinders the timing of this diversification. Indeed, although Devonian Archaeognatha are problematic, the Pragian of Scotland has given some Collembola and the incomplete insect Rhyniognatha, with its diagnostic dicondylic, metapterygotan mandibles. The oldest, definitively winged insects are from the Serpukhovian stage (latest Early Carboniferous period). Here we report the first complete Late Devonian insect, which was probably a terrestrial species. Its 'orthopteroid' mandibles are of an omnivorous type, clearly not modified for a solely carnivorous diet. This discovery narrows the 45-Myr gap in the fossil record of Hexapoda, and demonstrates further a first Devonian phase of diversification for the Hexapoda, as in vertebrates, and suggests that the Pterygota diversified before and during Romer's gap.  相似文献   
70.
Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αβ(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号