首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19116篇
  免费   127篇
  国内免费   54篇
系统科学   182篇
丛书文集   111篇
教育与普及   30篇
理论与方法论   81篇
现状及发展   6693篇
研究方法   773篇
综合类   11099篇
自然研究   328篇
  2015年   84篇
  2013年   207篇
  2012年   363篇
  2011年   715篇
  2010年   103篇
  2008年   261篇
  2007年   340篇
  2006年   345篇
  2005年   508篇
  2004年   799篇
  2003年   737篇
  2002年   423篇
  2001年   759篇
  2000年   813篇
  1999年   437篇
  1992年   371篇
  1991年   292篇
  1990年   329篇
  1989年   340篇
  1988年   308篇
  1987年   282篇
  1986年   309篇
  1985年   338篇
  1984年   294篇
  1983年   264篇
  1982年   215篇
  1981年   198篇
  1980年   224篇
  1979年   556篇
  1978年   428篇
  1977年   392篇
  1976年   327篇
  1975年   384篇
  1974年   545篇
  1973年   419篇
  1972年   430篇
  1971年   549篇
  1970年   657篇
  1969年   476篇
  1968年   496篇
  1967年   415篇
  1966年   434篇
  1965年   294篇
  1959年   135篇
  1958年   225篇
  1957年   162篇
  1956年   115篇
  1955年   115篇
  1954年   110篇
  1948年   89篇
排序方式: 共有10000条查询结果,搜索用时 703 毫秒
301.
Phytanic acid is a branched-chain fatty acid that accumulates in a variety of metabolic disorders. High levels of phytanic acid found in patients can exceed the millimolar range and lead to severe symptoms. Degradation of phytanic acid takes place by α-oxidation inside the peroxisome. A deficiency of its breakdown, leading to elevated levels, can result from either a general peroxisomal dysfunction or from a defect in one of the enzymes involved in α-oxidation. Research on Refsum disease, belonging to the latter group of disorders and characterized by a deficiency of the first enzyme of α-oxidation, has extended our knowledge of phytanic acid metabolism and pathology of the disease greatly over the past few decades. This review will centre on this research on phytanic acid: its origin, the mechanism by which its α-oxidation takes place, its role in human disease and the way it is produced from phytol. Received 4 October 2005; received after revision 24 February 2006; accepted 26 April 2006  相似文献   
302.
303.
Anthrax has been a major cause of death in grazing animals and an occasional cause of death in humans for thousands of years. Since the late 1800s there has been an exceptional international history of anthrax vaccine development. Due to animal vaccinations, the rate of infection has dropped dramatically. Anthrax vaccines have progressed from uncharacterized whole-cell vaccines in 1881, to pXO2-negative spores in the 1930s, to culture filtrates absorbed to aluminum hydroxide in 1970, and likely to recombinant protective antigen in the near future. Each of these refinements has increased safety without significant loss of efficacy. The threat of genetically engineered, antibiotic and vaccine resistant strains of Bacillus anthracis is fueling hypothesis-driven research and global techniques--including genomics, proteomics and transposon site hybridization--to facilitate the discovery of novel vaccine targets. This review highlights historical achievements and new developments in anthrax vaccine research.  相似文献   
304.
Structural and biological aspects of carotenoid cleavage   总被引:1,自引:0,他引:1  
Apo-carotenoid compounds such as retinol (vitamin A) are involved in a variety of cellular processes and are found in all kingdoms of life. Instead of being synthesized from small precursors, they are commonly produced by oxidative cleavage and subsequent modification of larger carotenoid compounds. The cleavage reaction is catalyzed by a family of related enzymes, which convert specific substrate double bonds to the corresponding aldehydes or ketones. The individual family members differ in their substrate preference and the position of the cleaved double bond, giving rise to a remarkable number of products starting from a limited number of carotenoid substrate molecules. The recent determination of the structure of a member of this family has provided insight into the reaction mechanism, showing how substrate specificity is achieved. This review will focus on the biochemistry of carotenoid oxygenases and the structural determinants of the cleavage reaction.  相似文献   
305.
306.
The thyroid hormone plays a fundamental role in the development, growth, and metabolic homeostasis in all vertebrates by affecting the expression of different sets of genes. A group of thioredoxin fold-containing selenoproteins known as deiodinases control thyroid hormone action by activating or inactivating the precursor molecule thyroxine that is secreted by the thyroid gland. These pathways ensure regulation of the availability of the biologically active molecule T3, which occurs in a time-and tissue-specific fashion. In addition, because cells and plasma are in equilibrium and deiodination affects central thyroid hormone regulation, these local deiodinase-mediated events can also affect systemic thyroid hormone economy, such as in the case of non-thyroidal illness. Heightened interest in the field has been generated following the discovery that the deiodinases can be a component in both the Sonic hedgehog signaling pathway and the TGR-5 signaling cascade, a G-protein-coupled receptor for bile acids. These new mechanisms involved in deiodinase regulation indicate that local thyroid hormone activation and inactivation play a much broader role than previously thought. Received 29 August 2007; received after revision 11 October 2007; accepted 16 October 2007  相似文献   
307.
The ability to produce differentiated cell types at will offers one approach to cell therapy and therefore the treatment and cure of degenerative diseases such as diabetes and liver failure. Until recently it was thought that differentiated cells could only be produced from embryonic or adult stem cells. However, we now know that this is not the case, and there is a growing body of evidence to show that one differentiated cell type can convert into a completely different phenotype (transdifferentiation). Understanding the cellular and molecular basis of transdifferentiation will allow us to reprogram cells for transplantation. This approach will complement the use of embryonic and adult stem cells in the treatment of degenerative disorders. In this review, we will focus on some well-documented examples of transdifferentiation.  相似文献   
308.
Endocrine-dependent expression of circadian clock genes in insects   总被引:1,自引:0,他引:1  
Current models state that insect peripheral oscillators are directly responsive to light, while mammalian peripheral clock genes are coordinated by a master clock in the brain via intermediate factors, possibly hormonal. We show that the expression levels of two circadian clock genes, period (per) and Par Domain Protein 1 (Pdp1) in the peripheral tissue of an insect model species, the linden bug Pyrrhocoris apterus, are inversely affected by contrasting photoperiods. The effect of photoperiod on per and Pdp1 mRNA levels was found to be mediated by the corpus allatum, an endocrine gland producing juvenile hormone. Our results provide the first experimental evidence for the effect of an endocrine gland on circadian clock gene expression in insects. Received 31 October 2007; received after revision 7 January 2008; accepted 9 January 2008 D. Dolezel, L. Zdechovanova: These authors contributed equally to this work.  相似文献   
309.
Cajal bodies (CBs) and Gems are nuclear domains that contain factors responsible for spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis. The marker protein for CBs is coilin. In addition to snRNPs, coilin and other factors, canonical CBs contain the survivor of motor neuron protein (SMN). SMN can also localize to Gems. Considering the important role that coilin plays in the formation and composition of CBs, we tested the splicing efficiency of several cell lines that vary in regards to coilin level and modification using an artificial reporter substrate. We found that cells with both hypomethylated coilin and Gems are more efficient at reporter splicing compared to cells in which SMN localizes to CBs. In contrast, coilin reduction, which induces Gem formation, decreases cell proliferation and artificial reporter splicing. These findings demonstrate that coilin modifications or levels impact artificial reporter splicing, possibly by influencing snRNP biogenesis. Received 26 December 2007; received after revision 5 February 2008; accepted 7 February 2008  相似文献   
310.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号