首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30183篇
  免费   81篇
  国内免费   90篇
系统科学   313篇
丛书文集   542篇
教育与普及   63篇
理论与方法论   103篇
现状及发展   12742篇
研究方法   1194篇
综合类   14954篇
自然研究   443篇
  2013年   223篇
  2012年   380篇
  2011年   892篇
  2010年   173篇
  2009年   133篇
  2008年   463篇
  2007年   596篇
  2006年   530篇
  2005年   543篇
  2004年   507篇
  2003年   544篇
  2002年   486篇
  2001年   1094篇
  2000年   1080篇
  1999年   606篇
  1992年   597篇
  1991年   454篇
  1990年   519篇
  1989年   507篇
  1988年   484篇
  1987年   480篇
  1986年   504篇
  1985年   572篇
  1984年   449篇
  1983年   403篇
  1982年   353篇
  1981年   378篇
  1980年   425篇
  1979年   970篇
  1978年   773篇
  1977年   771篇
  1976年   601篇
  1975年   652篇
  1974年   983篇
  1973年   754篇
  1972年   754篇
  1971年   930篇
  1970年   1180篇
  1969年   928篇
  1968年   869篇
  1967年   851篇
  1966年   769篇
  1965年   555篇
  1959年   321篇
  1958年   498篇
  1957年   333篇
  1956年   271篇
  1955年   270篇
  1954年   254篇
  1948年   168篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
491.
Constitutional abnormalities at the imprinted 11p15 growth regulatory region cause syndromes characterized by disordered growth, some of which include a risk of Wilms tumor. We explored their possible contribution to nonsyndromic Wilms tumor and identified constitutional 11p15 abnormalities in genomic lymphocyte DNA from 13 of 437 individuals (3%) with sporadic Wilms tumor without features of growth disorders, including 12% of bilateral cases (P = 0.001) and in one familial Wilms tumor pedigree. No abnormality was detected in 220 controls (P = 0.006). Abnormalities identified included H19 DMR epimutations, uniparental disomy 11p15 and H19 DMR imprinting center mutations (one microinsertion and one microdeletion), thus identifying microinsertion as a new class of imprinting center mutation. Our data identify constitutional 11p15 defects as one of the most common known causes of Wilms tumor, provide mechanistic insights into imprinting disruption and reveal clinically important epigenotype-phenotype associations. The impact on clinical management dictates that constitutional 11p15 analysis should be considered in all individuals with Wilms tumor.  相似文献   
492.
Rapid Ca2+-dependent phospholipid (PL) reorganization (scrambling) at the plasma membrane is a mechanism common to hematopoietic cells exposing procoagulant phosphatidylserine (PS). The aim of this research was to determine whether activation of the extracellular signal-regulated kinase (ERK) pathway was required for PL scrambling, based on a single report analyzing both responses induced by Ca2+ ionophores in megakaryoblastic HEL cells. Ca2+ ionophore-stimulated ERK phosphorylation was induced in platelets without external Ca2+, whereas exogenous Ca2+ entry was crucial for ERK activation in Jurkat T cells. In both cells, membrane scrambling only occurred following Ca2+ entry and was not blocked by inhibiting ERK phosphorylation. Furthermore, ERK proteins are strongly phosphorylated in transformed B lymphoblastic cell lines, which do not expose PS in their resting state. Overall, the data demonstrated that ERK activation and membrane scrambling are independent mechanisms. A. Arachiche, I. Badirou: These authors contributed equally to this work. Received 18 June 2008; received after revision 24 September 2008; accepted 1 October 2008  相似文献   
493.
Sirtuins comprise a unique class of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that target multiple protein substrates to execute diverse biological functions. These enzymes are key regulators of clinically important cellular and organismal processes, including metabolism, cell division and aging. The desire to understand the important determinants of human health and lifespan has resulted in a firestorm of work on the seven mammalian sirtuins in less than a decade. The implication of sirtuins in medically important areas such as diabetes, cancer, cardiovascular dysfunction and neurodegenerative disease has further catapulted them to a prominent status as potential targets for nutritional and therapeutic development. Here, we present a review of published results on sirtuin biology and its relevance to human disease. Received 25 June 2008; received after revision 20 August 2008; accepted 29 August 2008  相似文献   
494.
Meizothrombin is the physiologically active intermediate generated by a single cleavage of prothrombin at R320 to separate the A and B chains. Recent evidence has suggested that meizothrombin, like thrombin, is a Na(+)-activated enzyme. In this study we present the first X-ray crystal structure of human meizothrombin desF1 solved in the presence of the active site inhibitor PPACK at 2.1 A resolution. The structure reveals a Na(+) binding site whose architecture is practically identical to that of human thrombin. Stopped-flow measurements of Na(+) binding to meizothrombin desF1 document a slow phase of fluorescence change with a k(obs) decreasing hyperbolically with increasing [Na(+)], consistent with the existence of three conformations in equilibrium, E*, E and E:Na(+), as for human thrombin. Evidence that meizothrombin exists in multiple conformations provides valuable new information for studies of the mechanism of prothrombin activation.  相似文献   
495.
Zinc binding to the peptide replica and analogs to residues 93–115 of horse liver alcohol dehydrogenase (ADH) was examined by competition of the peptides and the chromophoric chelator 4-(2- pyridylazo)resorcinol for zinc and X-ray absorption fine structure analysis of the zinc ligands. In the enzyme, zinc is coordinated by four Cys residues. In the peptide replica, zinc is bound to three Cys and one His residue. A four-Cys zinc coordination is observed only when His is removed, leading to increased zinc stability. ADH crystal structures reveal that the ε-amino group of the conserved residue Lys323 is within H-bond distance of the backbone amide oxygens of residues 103, 105 and 108, likely stabilizing the zinc coordination in the enzyme. The peptide data thus indicate structural strain and increased energy in the zinc-binding site in the protein, characteristic of an entatic state, implying a functional nature for this zinc site. Received 3 July 2008; received after revision 11 August 2008; accepted 1 September 2008  相似文献   
496.
Digital clubbing, recognized by Hippocrates in the fifth century BC, is the outward hallmark of pulmonary hypertrophic osteoarthropathy, a clinical constellation that develops secondary to various acquired diseases, especially intrathoracic neoplasm. The pathogenesis of clubbing and hypertrophic osteoarthropathy has hitherto been poorly understood, but a clinically indistinguishable primary (idiopathic) form of hypertrophic osteoarthropathy (PHO) is recognized. This familial disorder can cause diagnostic confusion, as well as significant disability. By autozygosity methods, we mapped PHO to chromosome 4q33-q34 and identified mutations in HPGD, encoding 15-hydroxyprostaglandin dehydrogenase, the main enzyme of prostaglandin degradation. Homozygous individuals develop PHO secondary to chronically elevated prostaglandin E(2) levels. Heterozygous relatives also show milder biochemical and clinical manifestations. These findings not only suggest therapies for PHO, but also imply that clubbing secondary to other pathologies may be prostaglandin mediated. Testing for HPGD mutations and biochemical testing for HPGD deficiency in patients with unexplained clubbing might help to obviate extensive searches for occult pathology.  相似文献   
497.
It has been four years since the original publication of the draft sequence of the rat genome. Five groups are now working together to assemble, annotate and release an updated version of the rat genome. As the prevailing model for physiology, complex disease and pharmacological studies, there is an acute need for the rat's genomic resources to keep pace with the rat's prominence in the laboratory. In this commentary, we describe the current status of the rat genome sequence and the plans for its impending 'upgrade'. We then cover the key online resources providing access to the rat genome, including the new SNP views at Ensembl, the RefSeq and Genes databases at the US National Center for Biotechnology Information, Genome Browser at the University of California Santa Cruz and the disease portals for cardiovascular disease and obesity at the Rat Genome Database.  相似文献   
498.
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.  相似文献   
499.
Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200-500 microM) compared with other mammals (3-120 microM). About 70% of daily urate disposal occurs via the kidneys, and in 5-25% of the human population, impaired renal excretion leads to hyperuricemia. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7-5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes.  相似文献   
500.
Serum uric acid concentrations are correlated with gout and clinical entities such as cardiovascular disease and diabetes. In the genome-wide association study KORA (Kooperative Gesundheitsforschung in der Region Augsburg) F3 500K (n = 1,644), the most significant SNPs associated with uric acid concentrations mapped within introns 4 and 6 of SLC2A9, a gene encoding a putative hexose transporter (effects: -0.23 to -0.36 mg/dl per copy of the minor allele). We replicated these findings in three independent samples from Germany (KORA S4 and SHIP (Study of Health in Pomerania)) and Austria (SAPHIR; Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk), with P values ranging from 1.2 x 10(-8) to 1.0 x 10(-32). Analysis of whole blood RNA expression profiles from a KORA F3 500K subgroup (n = 117) showed a significant association between the SLC2A9 isoform 2 and urate concentrations. The SLC2A9 genotypes also showed significant association with self-reported gout. The proportion of the variance of serum uric acid concentrations explained by genotypes was about 1.2% in men and 6% in women, and the percentage accounted for by expression levels was 3.5% in men and 15% in women.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号