首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30363篇
  免费   93篇
  国内免费   119篇
系统科学   139篇
丛书文集   224篇
教育与普及   70篇
理论与方法论   95篇
现状及发展   12263篇
研究方法   1287篇
综合类   16005篇
自然研究   492篇
  2013年   275篇
  2012年   427篇
  2011年   915篇
  2010年   191篇
  2008年   521篇
  2007年   635篇
  2006年   622篇
  2005年   603篇
  2004年   560篇
  2003年   566篇
  2002年   525篇
  2001年   1150篇
  2000年   1114篇
  1999年   647篇
  1994年   343篇
  1992年   622篇
  1991年   473篇
  1990年   542篇
  1989年   521篇
  1988年   472篇
  1987年   490篇
  1986年   529篇
  1985年   614篇
  1984年   484篇
  1983年   447篇
  1982年   404篇
  1981年   385篇
  1980年   396篇
  1979年   1003篇
  1978年   756篇
  1977年   697篇
  1976年   598篇
  1975年   638篇
  1974年   838篇
  1973年   694篇
  1972年   677篇
  1971年   838篇
  1970年   1096篇
  1969年   782篇
  1968年   833篇
  1967年   736篇
  1966年   716篇
  1965年   513篇
  1959年   265篇
  1958年   447篇
  1957年   302篇
  1956年   254篇
  1955年   241篇
  1954年   236篇
  1948年   204篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Researchers in several laboratories have reported a high frequency of homoplasmic mitochondrial DNA (mtDNA) mutations in human tumors. This observation has been interpreted to reflect a replicative advantage for mutated mtDNA copies, a growth advantage for a cell containing certain mtDNA mutations, and/or tumorigenic properties of mtDNA mutations. We consider another possibility-that the observed homoplasmy arose entirely by chance in tumor progenitor cells, without any physiological advantage or tumorigenic requirement. Through extensive computer modeling, we demonstrate that there is sufficient opportunity for a tumor progenitor cell to achieve homoplasmy through unbiased mtDNA replication and sorting during cell division. To test our model in vivo, we analyzed mtDNA homoplasmy in healthy human epithelial tissues and discovered that the model correctly predicts the considerable observed frequency of homoplasmic cells. Based on the available data on mitochondrial mutant fractions and cell division kinetics, we show that the predicted frequency of homoplasmy in tumor progenitor cells in the absence of selection is similar to the reported frequency of homoplasmic mutations in tumors. Although a role for other mechanisms is not excluded, random processes are sufficient to explain the incidence of homoplasmic mtDNA mutations in human tumors.  相似文献   
992.
The NOTCH4 gene was recently reported to be associated with schizophrenia based on TDT analysis of 80 British trios. The strongest evidence for association derived from two microsatellites. We genotyped both loci in a large sample of unrelated Scottish schizophrenics and controls, but failed to replicate the reported association, finding instead that each putative schizophrenia-associated allele had a somewhat lower frequency in schizophrenics than in controls.  相似文献   
993.
994.
Stargardt-like macular dystrophy (STGD3, MIM 600110) and autosomal dominant macular dystrophy (adMD) are inherited forms of macular degeneration characterized by decreased visual acuity, macular atrophy and extensive fundus flecks. Genetic mapping data suggest that mutations in a single gene may be responsible for both conditions, already known to bear clinical resemblance. Here we limit the minimum genetic region for STGD3 and adMD to a 0.6-cM interval by recombination breakpoint mapping and identify a single 5-bp deletion within the protein-coding region of a new retinal photoreceptor-specific gene, ELOVL4, in all affected members of STGD3 and adMD families. Bioinformatic analysis of ELOVL4 revealed that it has homology to a group of yeast proteins that function in the biosynthesis of very long chain fatty acids. Our results are therefore the first to implicate the biosynthesis of fatty acids in the pathogenesis of inherited macular degeneration.  相似文献   
995.
Mutations or rearrangements in the gene encoding the receptor tyrosine kinase RET result in Hirschsprung disease, cancer and renal malformations. The standard model of renal development involves reciprocal signaling between the ureteric bud epithelium, inducing metanephric mesenchyme to differentiate into nephrons, and metanephric mesenchyme, inducing the ureteric bud to grow and branch. RET and GDNF (a RET ligand) are essential mediators of these epithelial-mesenchymal interactions. Vitamin A deficiency has been associated with widespread embryonic abnormalities, including renal malformations. The vitamin A signal is transduced by nuclear retinoic acid receptors (RARs). We previously showed that two RAR genes, Rara and Rarb2, were colocalized in stromal mesenchyme, a third renal cell type, where their deletion led to altered stromal cell patterning, impaired ureteric bud growth and downregulation of Ret in the ureteric bud. Here we demonstrate that forced expression of Ret in mice deficient for both Rara and Rarb2 (Rara(-/-)Rarb2(-/-)) genetically rescues renal development, restoring ureteric bud growth and stromal cell patterning. Our studies indicate the presence of a new reciprocal signaling loop between the ureteric bud epithelium and the stromal mesenchyme, dependent on Ret and vitamin A. In the first part of the loop, vitamin-A-dependent signals secreted by stromal cells control Ret expression in the ureteric bud. In the second part of the loop, ureteric bud signals dependent on Ret control stromal cell patterning.  相似文献   
996.
High-resolution haplotype structure in the human genome   总被引:41,自引:0,他引:41  
Linkage disequilibrium (LD) analysis is traditionally based on individual genetic markers and often yields an erratic, non-monotonic picture, because the power to detect allelic associations depends on specific properties of each marker, such as frequency and population history. Ideally, LD analysis should be based directly on the underlying haplotype structure of the human genome, but this structure has remained poorly understood. Here we report a high-resolution analysis of the haplotype structure across 500 kilobases on chromosome 5q31 using 103 single-nucleotide polymorphisms (SNPs) in a European-derived population. The results show a picture of discrete haplotype blocks (of tens to hundreds of kilobases), each with limited diversity punctuated by apparent sites of recombination. In addition, we develop an analytical model for LD mapping based on such haplotype blocks. If our observed structure is general (and published data suggest that it may be), it offers a coherent framework for creating a haplotype map of the human genome.  相似文献   
997.
A radiation hybrid map of mouse genes   总被引:13,自引:0,他引:13  
A comprehensive gene-based map of a genome is a powerful tool for genetic studies and is especially useful for the positional cloning and positional candidate approaches. The availability of gene maps for multiple organisms provides the foundation for detailed conserved-orthology maps showing the correspondence between conserved genomic segments. These maps make it possible to use cross-species information in gene hunts and shed light on the evolutionary forces that shape the genome. Here we report a radiation hybrid map of mouse genes, a combined project of the Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, the Medical Research Council UK Mouse Genome Centre, and the National Center for Biotechnology Information. The map contains 11,109 genes, screened against the T31 RH panel and positioned relative to a reference map containing 2,280 mouse genetic markers. It includes 3,658 genes homologous to the human genome sequence and provides a framework for overlaying the human genome sequence to the mouse and for sequencing the mouse genome.  相似文献   
998.
We have constructed a BAC framework map of the mouse genome consisting of 2,808 PCR-confirmed BAC clusters, using a previously described method. Fingerprints of BACs from selected clusters confirm the accuracy of the map. Combined with BAC fingerprint data, the framework map covers 37% of the mouse genome.  相似文献   
999.
Cell death is critical for the development and orderly maintenance of cellular homeostasis in metazoans. Developmental genetics in model systems, including Caenorhabditis elegans and Drosophila melanogaster, have helped to identify and order the components of cell-death pathways. An even more complex network of apoptotic pathways has evolved in higher organisms that possess homologs within each set of cell-death regulators. Whereas biochemical studies provide details of molecular mechanisms, genetic models reveal the essential physiologic roles. Transgenic and gene-ablated mice have helped to elucidate mammalian apoptotic pathways and identify the principal effect of each cell death regulator. Here, we review the details of the apoptotic machinery as revealed by mice deficient in critical components of cell-death pathways; we concentrate on cell-death regulators classified as members of the caspase and Bcl2 families or, broadly, as adaptors and mitochondrial released factors.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号