首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   11篇
  国内免费   2篇
系统科学   7篇
教育与普及   2篇
理论与方法论   4篇
现状及发展   79篇
研究方法   90篇
综合类   212篇
自然研究   5篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   4篇
  2014年   11篇
  2013年   5篇
  2012年   50篇
  2011年   54篇
  2010年   23篇
  2009年   6篇
  2008年   35篇
  2007年   32篇
  2006年   34篇
  2005年   26篇
  2004年   26篇
  2003年   17篇
  2002年   26篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1975年   3篇
  1973年   1篇
  1969年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
141.
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.  相似文献   
142.
Understanding inter-individual differences in stress response requires the explanation of genetic influences at multiple phenotypic levels, including complex behaviours and the metabolic responses of brain regions to emotional stimuli. Neuropeptide Y (NPY) is anxiolytic and its release is induced by stress. NPY is abundantly expressed in regions of the limbic system that are implicated in arousal and in the assignment of emotional valences to stimuli and memories. Here we show that haplotype-driven NPY expression predicts brain responses to emotional and stress challenges and also inversely correlates with trait anxiety. NPY haplotypes predicted levels of NPY messenger RNA in post-mortem brain and lymphoblasts, and levels of plasma NPY. Lower haplotype-driven NPY expression predicted higher emotion-induced activation of the amygdala, as well as diminished resiliency as assessed by pain/stress-induced activations of endogenous opioid neurotransmission in various brain regions. A single nucleotide polymorphism (SNP rs16147) located in the promoter region alters NPY expression in vitro and seems to account for more than half of the variation in expression in vivo. These convergent findings are consistent with the function of NPY as an anxiolytic peptide and help to explain inter-individual variation in resiliency to stress, a risk factor for many diseases.  相似文献   
143.
Galy V  France-Lanord C  Beyssac O  Faure P  Kudrass H  Palhol F 《Nature》2007,450(7168):407-410
Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales.  相似文献   
144.
145.
146.
舌形贝(Lingulidae)最早出现在寒武纪早期,因其壳体外形与现代舌形贝相似,通常被认为是活化石,但形态解剖研究表明澄江化石库舌形贝属Lingulella 和Lingulellotreta 与现代舌形贝Lingula在脉管系统、刚毛排列和内脏区分布,以及生活方式方面存在较大差别,进而表明了“活化石”在漫长的地质历史中也存在一定的环境适应性改变。  相似文献   
147.
The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth and cancer. However, the downstream translationally regulated nodes of gene expression that may direct cancer development are poorly characterized. Using ribosome profiling, we uncover specialized translation of the prostate cancer genome by oncogenic mTOR signalling, revealing a remarkably specific repertoire of genes involved in cell proliferation, metabolism and invasion. We extend these findings by functionally characterizing a class of translationally controlled pro-invasion messenger RNAs that we show direct prostate cancer invasion and metastasis downstream of oncogenic mTOR signalling. Furthermore, we develop a clinically relevant ATP site inhibitor of mTOR, INK128, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure. Together, these findings extend our understanding of how the 'cancerous' translation machinery steers specific cancer cell behaviours, including metastasis, and may be therapeutically targeted.  相似文献   
148.
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia   总被引:3,自引:0,他引:3  
Acetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty-acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate lyase in the cytosol. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near-stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle and fatty-acid synthesis. Although glutamine is consumed at levels exceeding that required for nitrogen biosynthesis, the regulation and use of glutamine metabolism in hypoxic cells is not well understood. Here we show that human cells use reductive metabolism of α-ketoglutarate to synthesize AcCoA for lipid synthesis. This isocitrate dehydrogenase-1 (IDH1)-dependent pathway is active in most cell lines under normal culture conditions, but cells grown under hypoxia rely almost exclusively on the reductive carboxylation of glutamine-derived α-ketoglutarate for de novo lipogenesis. Furthermore, renal cell lines deficient in the von Hippel-Lindau tumour suppressor protein preferentially use reductive glutamine metabolism for lipid biosynthesis even at normal oxygen levels. These results identify a critical role for oxygen in regulating carbon use to produce AcCoA and support lipid synthesis in mammalian cells.  相似文献   
149.
Pascoli V  Turiault M  Lüscher C 《Nature》2012,481(7379):71-75
Drug-evoked synaptic plasticity is observed at many synapses and may underlie behavioural adaptations in addiction. Mechanistic investigations start with the identification of the molecular drug targets. Cocaine, for example, exerts its reinforcing and early neuroadaptive effects by inhibiting the dopamine transporter, thus causing a strong increase in mesolimbic dopamine. Among the many signalling pathways subsequently engaged, phosphorylation of the extracellular signal-regulated kinase (ERK) in the nucleus accumbens is of particular interest because it has been implicated in NMDA-receptor and type 1 dopamine (D1)-receptor-dependent synaptic potentiation as well as in several behavioural adaptations. A causal link between drug-evoked plasticity at identified synapses and behavioural adaptations, however, is missing, and the benefits of restoring baseline transmission have yet to be demonstrated. Here we find that cocaine potentiates excitatory transmission in D1-receptor-expressing medium-sized spiny neurons (D1R-MSNs) in mice via ERK signalling with a time course that parallels locomotor sensitization. Depotentiation of cortical nucleus accumbens inputs by optogenetic stimulation in vivo efficiently restored normal transmission and abolished cocaine-induced locomotor sensitization. These findings establish synaptic potentiation selectively in D1R-MSNs as a mechanism underlying a core component of addiction, probably by creating an imbalance between distinct populations of MSNs in the nucleus accumbens. Our data also provide proof of principle that reversal of cocaine-evoked synaptic plasticity can treat behavioural alterations caused by addictive drugs and may inspire novel therapeutic approaches involving deep brain stimulation or transcranial magnetic stimulation.  相似文献   
150.
In relativistic quantum field theory, information propagation is bounded by the speed of light. No such limit exists in the non-relativistic case, although in real physical systems, short-range interactions may be expected to restrict the propagation of information to finite velocities. The question of how fast correlations can spread in quantum many-body systems has been long studied. The existence of a maximal velocity, known as the Lieb-Robinson bound, has been shown theoretically to exist in several interacting many-body systems (for example, spins on a lattice)--such systems can be regarded as exhibiting an effective light cone that bounds the propagation speed of correlations. The existence of such a 'speed of light' has profound implications for condensed matter physics and quantum information, but has not been observed experimentally. Here we report the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open perspectives for understanding the relaxation of closed quantum systems far from equilibrium, and for engineering the efficient quantum channels necessary for fast quantum computations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号