首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1506篇
  免费   10篇
  国内免费   1篇
系统科学   20篇
理论与方法论   10篇
现状及发展   842篇
研究方法   149篇
综合类   491篇
自然研究   5篇
  2018年   23篇
  2017年   15篇
  2016年   19篇
  2015年   12篇
  2014年   21篇
  2013年   18篇
  2012年   55篇
  2011年   70篇
  2010年   36篇
  2009年   14篇
  2008年   87篇
  2007年   72篇
  2006年   82篇
  2005年   65篇
  2004年   61篇
  2003年   59篇
  2002年   53篇
  2001年   38篇
  2000年   51篇
  1999年   21篇
  1996年   12篇
  1995年   9篇
  1994年   19篇
  1985年   13篇
  1984年   15篇
  1982年   13篇
  1981年   14篇
  1980年   27篇
  1979年   17篇
  1978年   16篇
  1977年   14篇
  1976年   19篇
  1975年   20篇
  1973年   25篇
  1972年   24篇
  1971年   30篇
  1970年   27篇
  1969年   19篇
  1968年   30篇
  1967年   23篇
  1966年   20篇
  1965年   23篇
  1964年   13篇
  1963年   15篇
  1962年   11篇
  1961年   14篇
  1960年   12篇
  1957年   9篇
  1956年   13篇
  1947年   10篇
排序方式: 共有1517条查询结果,搜索用时 24 毫秒
991.
The lymphocyte-specific protein tyrosine kinase (Lck), which belongs to the Src kinase-family, is expressed in neurons of the hippocampus, a structure critical for learning and memory. Recent evidence demonstrated a significant downregulation of Lck in Alzheimer’s disease. Lck has additionally been proposed to be a risk factor for Alzheimer’s disease, thus suggesting the involvement of Lck in memory function. The neuronal role of Lck, however, and its involvement in learning and memory remain largely unexplored. Here, in vitro electrophysiology, confocal microscopy, and molecular, pharmacological, genetic and biochemical techniques were combined with in vivo behavioral approaches to examine the role of Lck in the mouse hippocampus. Specific pharmacological inhibition and genetic silencing indicated the involvement of Lck in the regulation of neuritic outgrowth. In the functional pre-established synaptic networks that were examined electrophysiologically, specific Lck-inhibition also selectively impaired the long-term hippocampal synaptic plasticity without affecting spontaneous excitatory synaptic transmission or short-term synaptic potentiation. The selective inhibition of Lck also significantly altered hippocampus-dependent spatial learning and memory in vivo. These data provide the basis for the functional characterization of brain Lck, describing the importance of Lck as a critical regulator of both neuronal morphology and in vivo long-term memory.  相似文献   
992.
The objective of this article is to uncover benefits and risks of Integrated Product Service Offering (IPSO) in a systematic manner. To do so, it adopts an explorative longitudinal in-depth case study (development of an IPSO based on a new technology) and adds insights to the existing literature. The article first proposes a theoretical and generic framework termed the PCP (Provider - Customer - Product) triangle with associated information flow and uncertainty. Second, various types of benefits and risks are presented based on the framework. Among others, the benefit of keeping IPR (Intellectual Property Rights) with the provider and the risk of regulation change are new findings from the case study. In addition, the case study reveals that IPSO is regarded as a positive contributor to innovation. Applying the framework and classification of benefits and risks as norms to other cases has yet to be done for verification. However, the framework contributes scientifically to a better understanding of the benefits and risks of IPSO. In addition, this framework is advantageous with its easiness to understand, which contributes practically to the dissemination of IPS0 insight to industry.  相似文献   
993.
Pancreatic β-cell loss represents a key factor in the pathogenesis of diabetes. Since the influence of purinergic signaling in β-cell apoptosis has not been much investigated, we examined the role of the ADP receptor P2Y13 using the pancreatic insulinoma-cell line MIN6c4 as a model system. Real time-PCR revealed high expression of the ADP receptors P2Y1 and P2Y13. Adding the ADP analogue, 2MeSADP, to MIN6c4 cells induced calcium influx/mobilization and inhibition of cAMP production by activation of P2Y1 and P2Y13, respectively. 2MeSADP reduced cell proliferation and increased Caspase-3 activity; both these effects could be fully reversed by the P2Y13 receptor antagonist MRS2211. We further discovered that blocking the P2Y13 receptor results in enhanced ERK1/2, Akt/PKB and CREB phosphorylation mechanisms involved in β-cell survival. These results indicate that P2Y13 is a proapoptotic receptor in β-cells as the P2Y13 receptor antagonist MRS2211 is able to protect the cells from ADP induced apoptosis.  相似文献   
994.
The microbial phototaxis receptor sensory rhodopsin II (NpSRII, also named phoborhodopsin) mediates the photophobic response of the haloarchaeon Natronomonas pharaonis by modulating the swimming behaviour of the bacterium. After excitation by blue-green light NpSRII triggers, by means of a tightly bound transducer protein (NpHtrII), a signal transduction chain homologous with the two-component system of eubacterial chemotaxis. Two molecules of NpSRII and two molecules of NpHtrII form a 2:2 complex in membranes as shown by electron paramagnetic resonance and X-ray structure analysis. Here we present X-ray structures of the photocycle intermediates K and late M (M2) explaining the evolution of the signal in the receptor after retinal isomerization and the transfer of the signal to the transducer in the complex. The formation of late M has been correlated with the formation of the signalling state. The observed structural rearrangements allow us to propose the following mechanism for the light-induced activation of the signalling complex. On excitation by light, retinal isomerization leads in the K state to a rearrangement of a water cluster that partly disconnects two helices of the receptor. In the transition to late M the changes in the hydrogen bond network proceed further. Thus, in late M state an altered tertiary structure establishes the signalling state of the receptor. The transducer responds to the activation of the receptor by a clockwise rotation of about 15 degrees of helix TM2 and a displacement of this helix by 0.9 A at the cytoplasmic surface.  相似文献   
995.
Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal-onset multiple-system inflammatory disease. Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways. Cryopyrin forms a multi-protein complex termed 'the inflammasome', which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1beta (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1beta and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-alpha and IL-6, as well as activation of NF-kappaB and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1beta and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.  相似文献   
996.
997.
Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes, here we analysed the effect of the loss of function of 70% of Drosophila genes (including 90% of genes conserved in human) on cell-cycle progression of S2 cells using flow cytometry. To address redundancy, we also targeted genes involved in protein phosphorylation simultaneously with their homologues. We identify genes that control cell size, cytokinesis, cell death and/or apoptosis, and the G1 and G2/M phases of the cell cycle. Classification of the genes into pathways by unsupervised hierarchical clustering on the basis of these phenotypes shows that, in addition to classical regulatory mechanisms such as Myc/Max, Cyclin/Cdk and E2F, cell-cycle progression in S2 cells is controlled by vesicular and nuclear transport proteins, COP9 signalosome activity and four extracellular-signal-regulated pathways (Wnt, p38betaMAPK, FRAP/TOR and JAK/STAT). In addition, by simultaneously analysing several phenotypes, we identify a translational regulator, eIF-3p66, that specifically affects the Cyclin/Cdk pathway activity.  相似文献   
998.
Schäfer T  Maco B  Petfalski E  Tollervey D  Böttcher B  Aebi U  Hurt E 《Nature》2006,441(7093):651-655
The formation of eukaryotic ribosomes is a multistep process that takes place successively in the nucleolar, nucleoplasmic and cytoplasmic compartments. Along this pathway, multiple pre-ribosomal particles are generated, which transiently associate with numerous non-ribosomal factors before mature 60S and 40S subunits are formed. However, most mechanistic details of ribosome biogenesis are still unknown. Here we identify a maturation step of the yeast pre-40S subunit that is regulated by the protein kinase Hrr25 and involves ribosomal protein Rps3. A high salt concentration releases Rps3 from isolated pre-40S particles but not from mature 40S subunits. Electron microscopy indicates that pre-40S particles lack a structural landmark present in mature 40S subunits, the 'beak'. The beak is formed by the protrusion of 18S ribosomal RNA helix 33, which is in close vicinity to Rps3. Two protein kinases Hrr25 and Rio2 are associated with pre-40S particles. Hrr25 phosphorylates Rps3 and the 40S synthesis factor Enp1. Phosphorylated Rsp3 and Enp1 readily dissociate from the pre-ribosome, whereas subsequent dephosphorylation induces formation of the beak structure and salt-resistant integration of Rps3 into the 40S subunit. In vivo depletion of Hrr25 inhibits growth and leads to the accumulation of immature 40S subunits that contain unstably bound Rps3. We conclude that the kinase activity of Hrr25 regulates the maturation of 40S ribosomal subunits.  相似文献   
999.
Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux.  相似文献   
1000.
Gore J  Bryant Z  Nöllmann M  Le MU  Cozzarelli NR  Bustamante C 《Nature》2006,442(7104):836-839
DNA is often modelled as an isotropic rod, but its chiral structure suggests the possible importance of anisotropic mechanical properties, including coupling between twisting and stretching degrees of freedom. Simple physical intuition predicts that DNA should unwind under tension, as it is pulled towards a denatured structure. We used rotor bead tracking to directly measure twist-stretch coupling in single DNA molecules. Here we show that for small distortions, contrary to intuition, DNA overwinds under tension, reaching a maximum twist at a tension of approximately 30 pN. As tension is increased above this critical value, the DNA begins to unwind. The observed twist-stretch coupling predicts that DNA should also lengthen when overwound under constant tension, an effect that we quantitatively confirm. We present a simple model that explains these unusual mechanical properties, and also suggests a possible origin for the anomalously large torsional rigidity of DNA. Our results have implications for the action of DNA-binding proteins that must stretch and twist DNA to compensate for variability in the lengths of their binding sites. The requisite coupled DNA distortions are favoured by the intrinsic mechanical properties of the double helix reported here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号