首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40352篇
  免费   106篇
  国内免费   211篇
系统科学   244篇
丛书文集   728篇
教育与普及   83篇
理论与方法论   158篇
现状及发展   18567篇
研究方法   1638篇
综合类   18634篇
自然研究   617篇
  2013年   336篇
  2012年   569篇
  2011年   1218篇
  2010年   252篇
  2008年   713篇
  2007年   791篇
  2006年   800篇
  2005年   779篇
  2004年   795篇
  2003年   723篇
  2002年   752篇
  2001年   1264篇
  2000年   1155篇
  1999年   795篇
  1992年   762篇
  1991年   578篇
  1990年   655篇
  1989年   634篇
  1988年   592篇
  1987年   678篇
  1986年   652篇
  1985年   785篇
  1984年   652篇
  1983年   517篇
  1982年   459篇
  1981年   503篇
  1980年   622篇
  1979年   1276篇
  1978年   1044篇
  1977年   1030篇
  1976年   810篇
  1975年   880篇
  1974年   1189篇
  1973年   1068篇
  1972年   1071篇
  1971年   1212篇
  1970年   1559篇
  1969年   1174篇
  1968年   1115篇
  1967年   1144篇
  1966年   986篇
  1965年   688篇
  1964年   206篇
  1959年   378篇
  1958年   653篇
  1957年   458篇
  1956年   405篇
  1955年   361篇
  1954年   367篇
  1948年   272篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
811.
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.  相似文献   
812.
Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5KD cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro-irradiated Cdk5KD cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5KD compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5-dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5KD cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5KD cells is due to a role of Cdk5 in other pathways or the altered polymer levels.  相似文献   
813.
Nanoparticles (NPs) comprised of nanoengineered complexes are providing new opportunities for enabling targeted delivery of a range of therapeutics and combinations. A range of functionalities can be included within a nanoparticle complex, including surface chemistry that allows attachment of cell-specific ligands for targeted delivery, surface coatings to increase circulation times for enhanced bioavailability, specific materials on the surface or in the nanoparticle core that enable storage of a therapeutic cargo until the target site is reached, and materials sensitive to local or remote actuation cues that allow controlled delivery of therapeutics to the target cells. However, despite the potential benefits of NPs as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of NP materials, as well as their size and shape. The need to validate each NP for safety and efficacy with each therapeutic compound or combination of therapeutics is an enormous challenge, which forces industry to focus mainly on those nanoparticle materials where data on safety and efficacy already exists, i.e., predominantly polymer NPs. However, the enhanced functionality affordable by inclusion of metallic materials as part of nanoengineered particles provides a wealth of new opportunity for innovation and new, more effective, and safer therapeutics for applications such as cancer and cardiovascular diseases, which require selective targeting of the therapeutic to maximize effectiveness while avoiding adverse effects on non-target tissues.  相似文献   
814.
Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50% increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA.  相似文献   
815.
In this paper I identify a tension between the two sets of works by Kuhn regarding the genesis of the "new historiography of science". In the first, it could be said that the change from the traditional to the new historiography is strictly endogenous (referring to internal causes or reasons). In the second, the change is predominantly exogenous. To address this question, I draw on a text that is considered to be less important among Kuhn's works, but which, as shall be argued, allows some contact between Kuhn's two approaches via Koyré. I seek to point out and differentiate the roles of Koyré and Kuhn--from Kuhn's point of view--in the development of the historiography of science and, as a complement, present some reflections regarding the justification of the new historiography.  相似文献   
816.
817.
Age is an important risk for autoimmunity, and many autoimmune diseases preferentially occur in the second half of adulthood when immune competence has declined and thymic T cell generation has ceased. Many tolerance checkpoints have to fail for an autoimmune disease to develop, and several of those are susceptible to the immune aging process. Homeostatic T cell proliferation which is mainly responsible for T cell replenishment during adulthood can lead to the selection of T cells with increased affinity to self- or neoantigens and enhanced growth and survival properties. These cells can acquire a memory-like phenotype, in particular under lymphopenic conditions. Accumulation of end-differentiated effector T cells, either specific for self-antigen or for latent viruses, have a low activation threshold due to the expression of signaling and regulatory molecules and generate an inflammatory environment with their ability to be cytotoxic and to produce excessive amounts of cytokines and thereby inducing or amplifying autoimmune responses.  相似文献   
818.
819.
820.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号