首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19528篇
  免费   41篇
  国内免费   71篇
系统科学   167篇
丛书文集   288篇
教育与普及   44篇
理论与方法论   122篇
现状及发展   8779篇
研究方法   1049篇
综合类   8876篇
自然研究   315篇
  2013年   151篇
  2012年   381篇
  2011年   692篇
  2010年   161篇
  2009年   118篇
  2008年   392篇
  2007年   421篇
  2006年   441篇
  2005年   458篇
  2004年   450篇
  2003年   379篇
  2002年   381篇
  2001年   637篇
  2000年   595篇
  1999年   404篇
  1992年   342篇
  1991年   280篇
  1990年   293篇
  1989年   265篇
  1988年   245篇
  1987年   301篇
  1986年   306篇
  1985年   334篇
  1984年   301篇
  1983年   231篇
  1982年   205篇
  1981年   207篇
  1980年   271篇
  1979年   628篇
  1978年   487篇
  1977年   501篇
  1976年   330篇
  1975年   379篇
  1974年   584篇
  1973年   501篇
  1972年   505篇
  1971年   569篇
  1970年   759篇
  1969年   557篇
  1968年   456篇
  1967年   559篇
  1966年   467篇
  1965年   326篇
  1959年   169篇
  1958年   276篇
  1957年   212篇
  1956年   180篇
  1955年   149篇
  1954年   155篇
  1948年   130篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
201.
Progressive field-state collapse and quantum non-demolition photon counting   总被引:1,自引:0,他引:1  
The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system's state. The evolution induced by measurement (known as 'state collapse') can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.  相似文献   
202.
Silicon in the Earth's core   总被引:2,自引:0,他引:2  
Georg RB  Halliday AN  Schauble EA  Reynolds BC 《Nature》2007,447(7148):1102-1106
Small isotopic differences between the silicate minerals in planets may have developed as a result of processes associated with core formation, or from evaporative losses during accretion as the planets were built up. Basalts from the Earth and the Moon do indeed appear to have iron isotopic compositions that are slightly heavy relative to those from Mars, Vesta and primitive undifferentiated meteorites (chondrites). Explanations for these differences have included evaporation during the 'giant impact' that created the Moon (when a Mars-sized body collided with the young Earth). However, lithium and magnesium, lighter elements with comparable volatility, reveal no such differences, rendering evaporation unlikely as an explanation. Here we show that the silicon isotopic compositions of basaltic rocks from the Earth and the Moon are also distinctly heavy. A likely cause is that silicon is one of the light elements in the Earth's core. We show that both the direction and magnitude of the silicon isotopic effect are in accord with current theory based on the stiffness of bonding in metal and silicate. The similar isotopic composition of the bulk silicate Earth and the Moon is consistent with the recent proposal that there was large-scale isotopic equilibration during the giant impact. We conclude that Si was already incorporated as a light element in the Earth's core before the Moon formed.  相似文献   
203.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.  相似文献   
204.
205.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   
206.
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.  相似文献   
207.
208.
209.
The start of the Palaeocene/Eocene thermal maximum--a period of exceptional global warming about 55 million years ago--is marked by a prominent negative carbon isotope excursion that reflects a massive input of 13C-depleted ('light') carbon to the ocean-atmosphere system. It is often assumed that this carbon injection initiated the rapid increase in global surface temperatures and environmental change that characterize the climate perturbation, but the exact sequence of events remains uncertain. Here we present chemical and biotic records of environmental change across the Palaeocene/Eocene boundary from two sediment sections in New Jersey that have high sediment accumulation rates. We show that the onsets of environmental change (as recorded by the abundant occurrence ('acme') of the dinoflagellate cyst Apectodinium) and of surface-ocean warming (as evidenced by the palaeothermometer TEX86) preceded the light carbon injection by several thousand years. The onset of the Apectodinium acme also precedes the carbon isotope excursion in sections from the southwest Pacific Ocean and the North Sea, indicating that the early onset of environmental change was not confined to the New Jersey shelf. The lag of approximately 3,000 years between the onset of warming in New Jersey shelf waters and the carbon isotope excursion is consistent with the hypothesis that bottom water warming caused the injection of 13C-depleted carbon by triggering the dissociation of submarine methane hydrates, but the cause of the early warming remains uncertain.  相似文献   
210.
The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight. However, in the current 'obesogenic' human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions. Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans. Here we show, using functional magnetic resonance imaging, that peptide YY3-36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号