首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28520篇
  免费   56篇
  国内免费   126篇
系统科学   189篇
丛书文集   365篇
教育与普及   77篇
理论与方法论   139篇
现状及发展   11984篇
研究方法   1379篇
综合类   14092篇
自然研究   477篇
  2013年   235篇
  2012年   538篇
  2011年   1039篇
  2010年   227篇
  2009年   154篇
  2008年   618篇
  2007年   701篇
  2006年   666篇
  2005年   710篇
  2004年   715篇
  2003年   643篇
  2002年   665篇
  2001年   833篇
  2000年   796篇
  1999年   573篇
  1992年   488篇
  1991年   400篇
  1990年   433篇
  1989年   405篇
  1988年   399篇
  1987年   435篇
  1986年   403篇
  1985年   512篇
  1984年   407篇
  1983年   355篇
  1982年   325篇
  1981年   316篇
  1980年   394篇
  1979年   881篇
  1978年   676篇
  1977年   671篇
  1976年   525篇
  1975年   598篇
  1974年   774篇
  1973年   708篇
  1972年   721篇
  1971年   822篇
  1970年   1049篇
  1969年   798篇
  1968年   726篇
  1967年   788篇
  1966年   671篇
  1965年   455篇
  1959年   253篇
  1958年   450篇
  1957年   330篇
  1956年   284篇
  1955年   237篇
  1954年   220篇
  1948年   196篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
311.
312.
Pillitteri LJ  Sloan DB  Bogenschutz NL  Torii KU 《Nature》2007,445(7127):501-505
Stomata consist of a pair of guard cells that mediate gas and water-vapour exchange between plants and the atmosphere. Stomatal precursor cells-meristemoids-possess a transient stem-cell-like property and undergo several rounds of asymmetric divisions before further differentiation. Here we report that the Arabidopsis thaliana basic helix-loop-helix (bHLH) protein MUTE is a key switch for meristemoid fate transition. In the absence of MUTE, meristemoids abort after excessive asymmetric divisions and fail to differentiate stomata. Constitutive overexpression of MUTE directs the entire epidermis to adopt guard cell identity. MUTE has two paralogues: FAMA, a regulator of guard cell morphogenesis, and SPEECHLESS (SPCH). We show that SPCH directs the first asymmetric division that initiates stomatal lineage. Together, SPCH, MUTE and FAMA bHLH proteins control stomatal development at three consecutive steps: initiation, meristemoid differentiation and guard cell morphogenesis. Our findings highlight the roles of closely related bHLHs in cell type differentiation in plants and animals.  相似文献   
313.
Jones WD  Cayirlioglu P  Kadow IG  Vosshall LB 《Nature》2007,445(7123):86-90
Blood-feeding insects, including the malaria mosquito Anopheles gambiae, use highly specialized and sensitive olfactory systems to locate their hosts. This is accomplished by detecting and following plumes of volatile host emissions, which include carbon dioxide (CO2). CO2 is sensed by a population of olfactory sensory neurons in the maxillary palps of mosquitoes and in the antennae of the more genetically tractable fruitfly, Drosophila melanogaster. The molecular identity of the chemosensory CO2 receptor, however, remains unknown. Here we report that CO2-responsive neurons in Drosophila co-express a pair of chemosensory receptors, Gr21a and Gr63a, at both larval and adult life stages. We identify mosquito homologues of Gr21a and Gr63a, GPRGR22 and GPRGR24, and show that these are co-expressed in A. gambiae maxillary palps. We show that Gr21a and Gr63a together are sufficient for olfactory CO2-chemosensation in Drosophila. Ectopic expression of Gr21a and Gr63a together confers CO2 sensitivity on CO2-insensitive olfactory neurons, but neither gustatory receptor alone has this function. Mutant flies lacking Gr63a lose both electrophysiological and behavioural responses to CO2. Knowledge of the molecular identity of the insect olfactory CO2 receptors may spur the development of novel mosquito control strategies designed to take advantage of this unique and critical olfactory pathway. This in turn could bolster the worldwide fight against malaria and other insect-borne diseases.  相似文献   
314.
The enzyme uracil DNA glycosylase (UNG) excises unwanted uracil bases in the genome using an extrahelical base recognition mechanism. Efficient removal of uracil is essential for prevention of C-to-T transition mutations arising from cytosine deamination, cytotoxic U*A pairs arising from incorporation of dUTP in DNA, and for increasing immunoglobulin gene diversity during the acquired immune response. A central event in all of these UNG-mediated processes is the singling out of rare U*A or U*G base pairs in a background of approximately 10(9) T*A or C*G base pairs in the human genome. Here we establish for the human and Escherichia coli enzymes that discrimination of thymine and uracil is initiated by thermally induced opening of T*A and U*A base pairs and not by active participation of the enzyme. Thus, base-pair dynamics has a critical role in the genome-wide search for uracil, and may be involved in initial damage recognition by other DNA repair glycosylases.  相似文献   
315.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   
316.
Höner OP  Wachter B  East ML  Streich WJ  Wilhelm K  Burke T  Hofer H 《Nature》2007,448(7155):798-801
Dispersal has a significant impact on lifetime reproductive success, and is often more prevalent in one sex than the other. In group-living mammals, dispersal is normally male-biased and in theory this sexual bias could be a response by males to female mate preferences, competition for access to females or resources, or the result of males avoiding inbreeding. There is a lack of studies on social mammals that simultaneously assess these factors and measure the fitness consequences of male dispersal decisions. Here we show that male-biased dispersal in the spotted hyaena (Crocuta crocuta) most probably results from an adaptive response by males to simple female mate-choice rules that have evolved to avoid inbreeding. Microsatellite profiling revealed that females preferred sires that were born into or immigrated into the female's group after the female was born. Furthermore, young females preferred short-tenured sires and older females preferred longer-tenured sires. Males responded to these female mate preferences by initiating their reproductive careers in groups containing the highest number of young females. As a consequence, 11% of males started their reproductive career in their natal group and 89% of males dispersed. Males that started reproduction in groups containing the highest number of young females had a higher long-term reproductive success than males that did not. The female mate-choice rules ensured that females effectively avoided inbreeding without the need to discriminate directly against close kin or males born in their own group, or to favour immigrant males. The extent of male dispersal as a response to such female mate preferences depends on the demographic structure of breeding groups, rather than the genetic relatedness between females and males.  相似文献   
317.
Conover DO 《Nature》2007,450(7167):179-180
  相似文献   
318.
Partridge L  Gems D 《Nature》2007,450(7167):165-167
  相似文献   
319.
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.  相似文献   
320.
Engulfment and subsequent degradation of apoptotic cells is an essential step that occurs throughout life in all multicellular organisms. ELMO/Dock180/Rac proteins are a conserved signalling module for promoting the internalization of apoptotic cell corpses; ELMO and Dock180 function together as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac, and thereby regulate the phagocyte actin cytoskeleton during engulfment. However, the receptor(s) upstream of the ELMO/Dock180/Rac module are still unknown. Here we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a receptor upstream of ELMO and as a receptor that can bind phosphatidylserine on apoptotic cells. BAI1 is a seven-transmembrane protein belonging to the adhesion-type G-protein-coupled receptor family, with an extended extracellular region and no known ligands. We show that BAI1 functions as an engulfment receptor in both the recognition and subsequent internalization of apoptotic cells. Through multiple lines of investigation, we identify phosphatidylserine, a key 'eat-me' signal exposed on apoptotic cells, as a ligand for BAI1. The thrombospondin type 1 repeats within the extracellular region of BAI1 mediate direct binding to phosphatidylserine. As with intracellular signalling, BAI1 forms a trimeric complex with ELMO and Dock180, and functional studies suggest that BAI1 cooperates with ELMO/Dock180/Rac to promote maximal engulfment of apoptotic cells. Last, decreased BAI1 expression or interference with BAI1 function inhibits the engulfment of apoptotic targets ex vivo and in vivo. Thus, BAI1 is a phosphatidylserine recognition receptor that can directly recruit a Rac-GEF complex to mediate the uptake of apoptotic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号