首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6365篇
  免费   628篇
  国内免费   34篇
系统科学   1087篇
丛书文集   2篇
教育与普及   3篇
理论与方法论   285篇
现状及发展   1056篇
研究方法   131篇
综合类   4437篇
自然研究   26篇
  2020年   5篇
  2019年   5篇
  2018年   732篇
  2017年   739篇
  2016年   437篇
  2015年   41篇
  2014年   21篇
  2013年   20篇
  2012年   323篇
  2011年   1039篇
  2010年   845篇
  2009年   477篇
  2008年   557篇
  2007年   826篇
  2006年   54篇
  2005年   103篇
  2004年   159篇
  2003年   210篇
  2002年   108篇
  2001年   40篇
  2000年   43篇
  1999年   20篇
  1996年   4篇
  1992年   10篇
  1991年   10篇
  1990年   4篇
  1989年   10篇
  1988年   9篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1983年   3篇
  1982年   6篇
  1981年   7篇
  1980年   8篇
  1979年   8篇
  1978年   7篇
  1977年   10篇
  1976年   5篇
  1975年   9篇
  1974年   5篇
  1973年   9篇
  1972年   3篇
  1971年   9篇
  1970年   9篇
  1969年   7篇
  1968年   5篇
  1967年   8篇
  1966年   5篇
  1965年   7篇
排序方式: 共有7027条查询结果,搜索用时 156 毫秒
351.
Human non-small cell lung cancers (NSCLCs) with activating mutations in EGFR frequently respond to treatment with EGFR-targeted tyrosine kinase inhibitors (TKIs), such as erlotinib, but responses are not durable, as tumors acquire resistance. Secondary mutations in EGFR (such as T790M) or upregulation of the MET kinase are found in over 50% of resistant tumors. Here, we report increased activation of AXL and evidence for epithelial-to-mesenchymal transition (EMT) in multiple in vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to erlotinib in the absence of the EGFR p.Thr790Met alteration or MET activation. Genetic or pharmacological inhibition of AXL restored sensitivity to erlotinib in these tumor models. Increased expression of AXL and, in some cases, of its ligand GAS6 was found in EGFR-mutant lung cancers obtained from individuals with acquired resistance to TKIs. These data identify AXL as a promising therapeutic target whose inhibition could prevent or overcome acquired resistance to EGFR TKIs in individuals with EGFR-mutant lung cancer.  相似文献   
352.
353.
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.  相似文献   
354.
355.
Tumor-initiating cells (TICs) have emerged as the driving force of carcinomas, which appear as hierarchically structured. TICs as opposed to the tumor bulk display tumor forming potential, which is linked to a certain degree of self-renewal and differentiation, both major features of stem cells. Markers such as CD44, CD133, CD24, EpCAM, CD166, Lgr5, CD47, and ALDH have been described, which allow for the prospective enrichment of TICs. It is conspicuous that the same markers allow for an enrichment of TICs in various entities and, on the other hand, that different combinations of these markers were independently reported for the same tumor entity. Potential functions of these markers in the regulation of TIC phenotypes remained somewhat neglected although they might give insights in common molecular themes of TICs. The present review discusses major TIC markers with respect to their function and potential contributions to the tumorigenic phenotype of TICs.  相似文献   
356.
In eukaryotes, binding of the six-subunit origin recognition complex (ORC) to DNA provides an interactive platform for the sequential assembly of pre-replicative complexes. This process licenses replication origins competent for the subsequent initiation step. Here, we analyze the contribution of human Orc6, the smallest subunit of ORC, to DNA binding and pre-replicative complex formation. We show that Orc6 not only interacts with Orc1–Orc5 but also with the initiation factor Cdc6. Biochemical and imaging experiments reveal that this interaction is required for licensing DNA replication competent. Furthermore, we demonstrate that Orc6 contributes to the interaction of ORC with the chaperone protein HMGA1a (high mobility group protein A1a). Binding of human ORC to replication origins is not specified at the level of DNA sequence and the functional organization of origins is poorly understood. We have identified HMGA1a as one factor that might direct ORC to AT-rich heterochromatic regions. The systematic analysis of the interaction between ORC and HMGA1a revealed that Orc6 interacts with the acidic C-terminus of HMGA1a and also with its AT-hooks. Both domains support autonomous replication if targeted to DNA templates. As such, Orc6 functions at different stages of the replication initiation process. Orc6 can interact with ORC chaperone proteins such as HMGA1a to facilitate chromatin binding of ORC and is also an essential factor for pre-RC formation.  相似文献   
357.
358.
ORP1L is an oxysterol binding homologue that regulates late endosome (LE) positioning. We show that ORP1L binds several oxysterols and cholesterol, and characterize a mutant, ORP1L Δ560–563, defective in oxysterol binding. While wild-type ORP1L clusters LE, ORP1L Δ560–563 induces LE scattering, which is reversed by disruption of the endoplasmic reticulum (ER) targeting FFAT motif, suggesting that it is due to enhanced LE–ER interactions. Endosome motility is reduced upon overexpression of ORP1L. Both wild-type ORP1L and the Δ560–563 mutant induce the recruitment of both dynactin and kinesin-2 on LE. Most of the LE decorated by overexpressed ORP1L fail to accept endocytosed dextran or EGF, and the transfected cells display defective degradation of internalized EGF. ORP1L silencing in macrophage foam cells enhances endosome motility and results in inhibition of [3H]cholesterol efflux to apolipoprotein A-I. These data demonstrate that LE motility and functions in both protein and lipid transport are regulated by ORP1L.  相似文献   
359.
360.
NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号