排序方式: 共有74条查询结果,搜索用时 31 毫秒
51.
'Water-tastes' are gustatory after-impressions elicited by water following the removal of a chemical solution from the mouth, akin to colour after-images appearing on 'white' paper after fixation on coloured images. Unlike colour after-images, gustatory after-effects are poorly understood. One theory posits that 'water-tastes' are adaptation phenomena, in which adaptation to one taste solution causes the water presented subsequently to act as a taste stimulus. An alternative hypothesis is that removal of the stimulus upon rinsing generates a receptor-based, positive, off-response in taste-receptor cells, ultimately inducing a gustatory perception. Here we show that a sweet 'water-taste' is elicited when sweet-taste inhibitors are rinsed away. Responses of cultured cells expressing the human sweetener receptor directly parallel the psychophysical responses-water rinses remove the inhibitor from the heteromeric sweetener receptor TAS1R2-TAS1R3, which activates cells and results in the perception of strong sweetness from pure water. This 'rebound' activity occurs when equilibrium forces on the two-state allosteric sweet receptors result in their coordinated shift to the activated state upon being released from inhibition by rinsing. 相似文献
52.
53.
54.
Brandl K Plitas G Mihu CN Ubeda C Jia T Fleisher M Schnabl B DeMatteo RP Pamer EG 《Nature》2008,455(7214):804-807
Infection with antibiotic-resistant bacteria, such as vancomycin-resistant Enterococcus (VRE), is a dangerous and costly complication of broad-spectrum antibiotic therapy. How antibiotic-mediated elimination of commensal bacteria promotes infection by antibiotic-resistant bacteria is a fertile area for speculation with few defined mechanisms. Here we demonstrate that antibiotic treatment of mice notably downregulates intestinal expression of RegIIIgamma (also known as Reg3g), a secreted C-type lectin that kills Gram-positive bacteria, including VRE. Downregulation of RegIIIgamma markedly decreases in vivo killing of VRE in the intestine of antibiotic-treated mice. Stimulation of intestinal Toll-like receptor 4 by oral administration of lipopolysaccharide re-induces RegIIIgamma, thereby boosting innate immune resistance of antibiotic-treated mice against VRE. Compromised mucosal innate immune defence, as induced by broad-spectrum antibiotic therapy, can be corrected by selectively stimulating mucosal epithelial Toll-like receptors, providing a potential therapeutic approach to reduce colonization and infection by antibiotic-resistant microbes. 相似文献
55.
Bernd Fritzsch Daniel F. Eberl Kirk W. Beisel 《Cellular and molecular life sciences : CMLS》2010,67(18):3089-3099
In mouse ear development, two bHLH genes, Atoh1 and Neurog1, are essential for hair cell and sensory neuron differentiation. Evolution converted the original simple atonal-dependent neurosensory cell formation program of diploblasts into the derived developmental program of vertebrates that generates
two neurosensory cell types, the sensory neuron and the sensory hair cell. This transformation was achieved through gene multiplication
in ancestral triploblasts resulting in the expansion of the atonal
bHLH gene family. Novel genes of the Neurogenin and NeuroD families are upregulated prior to the expression of Atoh1. Recent data suggest that NeuroD and Neurogenin were lost or their function in neuronal specification reduced in flies, thus changing our perception of the evolution of
these genes. This sequence of expression changes was accompanied by modification of the E-box binding sites of these genes
to regulate different downstream genes and to form inhibitory loops among each other, thus fine-tuning expression transitions. 相似文献
56.
57.
Vogt J Glumm R Schlüter L Schmitz D Rost BR Streu N Rister B Suman Bharathi B Gagiannis D Hildebrandt H Weinhold B Mühlenhoff M Naumann T Savaskan NE Brauer AU Reutter W Heimrich B Nitsch R Horstkorte R 《Cellular and molecular life sciences : CMLS》2012,69(7):1179-1191
During development, axonal projections have a remarkable ability to innervate correct dendritic subcompartments of their target neurons and to form regular neuronal circuits. Altered axonal targeting with formation of synapses on inappropriate neurons may result in neurodevelopmental sequelae, leading to psychiatric disorders. Here we show that altering the expression level of the polysialic acid moiety, which is a developmentally regulated, posttranslational modification of the neural cell adhesion molecule NCAM, critically affects correct circuit formation. Using a chemically modified sialic acid precursor (N-propyl-D: -mannosamine), we inhibited the polysialyltransferase ST8SiaII, the principal enzyme involved in polysialylation during development, at selected developmental time-points. This treatment altered NCAM polysialylation while NCAM expression was not affected. Altered polysialylation resulted in an aberrant mossy fiber projection that formed glutamatergic terminals on pyramidal neurons of the CA1 region in organotypic slice cultures and in vivo. Electrophysiological recordings revealed that the ectopic terminals on CA1 pyramids were functional and displayed characteristics of mossy fiber synapses. Moreover, ultrastructural examination indicated a "mossy fiber synapse"-like morphology. We thus conclude that homeostatic regulation of the amount of synthesized polysialic acid at specific developmental stages is essential for correct synaptic targeting and circuit formation during hippocampal development. 相似文献
58.
59.
60.